離散型の場合(Discrete case)

確率変数$X$のとる値を $x_{1},x_{2},\ldots,x_{n}$とし,各事象 $(X = x_{i})$の確率を $p_{1},p_{2},\ldots,p_{n}$とするとき,

$\displaystyle P(X = x_{i}) = p_{i} \ (i = 1,2,\ldots, n) \ \ \sum{p_{i}} = 1, (p_{i} \geq 0)$

で表される.これより,$X$の確率分布$f$

Xの値 $x_{i}$ $x_{1}$ $x_{2}$ $\cdots$ $x_{n}$
$P(X = x_{i}) = p_{i} = f(x_{i})$ $p_{1}$ $p_{2}$ $\cdots$ $p_{n}$
また,確率変数$X$のとる値を $x_{1} < x_{2} < \cdots < x_{n}$とするとき,その分布関数$F(x_{r})$は次のように求められる.

$\displaystyle F(x_{r}) = P(X \leq x_{r}) = p_{1} + p_{2} + \cdots + p_{r} = \sum_{i=1}^{r}p_{i}$

確率分布$f$と分布関数$F$は次の性質をもつ.

  1. $0 \leq p_{i} = f(x_{i}) \leq 1 \ (i = 1,2,\ldots, n)$
  2. $F(x_{n}) = P(X \leq x_{n}) = p_{1} + p_{2} + \cdots + p_{n} = 1$
  3. $P(a < X \leq b) = F(b) - F(a)$
  4. $a < b$ $\Longrightarrow$ $F(a) < F(b)$

平均と分散

確率変数$X$の平均(期待値)と分散は次の式で定義されます.

$\displaystyle \mu = E(X) = \sum_{i=1}^{k}x_{i}p_{i}$

$\displaystyle \sigma^2 = V(X) = E\left((X- \mu)^2\right) =E(X^2) - E(X)^2$

例題 2..2  

$E(X) = \sum_{i=1}^{k}x_{i}p_{i},\ E(Y) = \sum_{j=1}^{l}y_{j}q_{j}$のとき,

$\displaystyle E(X + Y ) = E(X) + E(Y)$

が成り立つことを示そう.

解答 $P(X = x_{i}, Y = y_{j})$$p_{ij}$で表すと

$\displaystyle \left\{\begin{array}{l}
\sum_{j=1}^{l}p_{ij} = p_{i}\hskip 3cm \s...
...1}^{l}p_{ij} = \sum_{i=1}^{k}p_{i} = \sum_{j=1}^{l}q_{j} = 1
\end{array}\right.$

これより,
$\displaystyle E(X + Y)$ $\displaystyle =$ $\displaystyle \sum_{i=1}^{k}\sum_{j=1}^{l}(x_{i} + y_{j})p_{ij}$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{k}(x_{i}\sum_{j=1}^{l}p_{ij}) + \sum_{j=1}^{l}(y_{j}\sum_{i=1}^{k}p_{ij})$  
  $\displaystyle =$ $\displaystyle \sum_{i=1}^{k}x_{i}p_{i} + \sum_{j=1}^{l}y_{j}q_{j} = E(X) + E(Y)$  

例題 2..3  

$E((X - \mu)^2) = E(X^2) - (E(X))^2$が成り立つことを示そう.

解答

$\displaystyle E((X - \mu)^2)$ $\displaystyle =$ $\displaystyle E(X^2 - 2X\mu + \mu^2)$  
  $\displaystyle =$ $\displaystyle E(X^2) - 2\mu E(X) + \mu^2 E(1)$  
  $\displaystyle =$ $\displaystyle E(X^2) - 2E(X)E(X) + E(X)^2 = E(X^2) - E(X)^2$