F分布

定義 3..2  

確率密度関数 $ f_{m,n}(x)$

$\displaystyle f_{m,n}(x) = \left\{\begin{array}{ll}
\frac{\gamma(\frac{m+n}{2})...
...{\frac{m}{2}-1}}{(mx+n)^{\frac{m+n}{2}}} & (x > 0)\\
0, &
\end{array}\right.$

で与えられる分布$ F_{m,n}$自由度対$ (m,n)$$ F$分布という。その期待値と分散は
$\displaystyle E(F_{m,n})$ $\displaystyle =$ $\displaystyle \frac{m}{n-2} (n > 2)$  
$\displaystyle V(F_{m,n})$ $\displaystyle =$ $\displaystyle \frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)} (n > 4)$  

となる。

定理 3..9  

$ X_{11},X_{12},\ldots,X_{1n_{1}}$がいずれも正規分布 $ N(\mu_{1},\sigma_{1}^2)$に従う互いに独立な$ n_{1}$個の確率変数で,その相加平均を $ \overline{X}_{1}$,不偏分散を$ U_{1}^2$とする.これらと独立に, $ X_{21},\ldots,X_{2n_{2}}$は正規分布 $ N(\mu_{2},\sigma_{2}^2)$に従う互いに独立な$ n_{2}$個の確率変数を考え,その相加平均を $ \overline{X}_{2}$,不偏分散を$ U_{2}^2$とする.
$\displaystyle \overline{X}_{1}$ $\displaystyle =$ $\displaystyle \frac{1}{n_{1}\sum_{i}X_{1i}}, U_{1}^2 = \frac{1}{n_{1}-1}\sum_{i}(X_{1i} - \overline{X}_{1})^2$  
$\displaystyle \overline{X}_{2}$ $\displaystyle =$ $\displaystyle \frac{1}{n_{2}\sum_{i}X_{2i}}, U_{2}^2 = \frac{1}{n_{2}-1}\sum_{i}(X_{2i} - \overline{X}_{2})^2$  

このとき,

$\displaystyle F = \frac{U_{1}^2/\sigma_{1}^2}{U_{2}^2/\sigma_{2}^2} = \frac{\sigma_{2}^2 U_{1}^2}{\sigma_{1}^2 U_{2}^2} \sim F(n_{1}-1, n_{2}-1)$


例題 3..10  

$ F_{n_{2}}^{n_{1}}(0.05) = F_{10}^{5}(0.05)$を求めよ.

$\displaystyle F_{10}^{5}(0.05) = 3.3258$

$ F_{n_{2}}^{n_{1}}(1-\alpha)$を求めるには,次の公式を用いる

$\displaystyle F_{n_{2}}^{n_{1}}(1-\alpha) = \frac{1}{F_{n_{1}}^{n_{2}}(\alpha)}$

例題 3..11  

$ F_{11}^{5}(1-0.05)$を求めよ.

$\displaystyle F_{11}^{5}(1-0.05) = \frac{1}{F_{5}^{11}(0.05)} = \frac{1}{3.10} = 0.32$