関数の極限(limit of function)

確認問題

1.
次の極限値を求めよう.

(a) $\displaystyle{\lim_{(x,y) \to (1,1)}\frac{x - y + 1}{x + y - 1}}$ (b) $\displaystyle{\lim_{(x,y) \to (0,0)}\frac{2x - 3y}{x + y}}$ (c) $\displaystyle{\lim_{(x,y) \to (0,0)}\frac{x^{2} - y^{2}}{x + y}}$

2.
次の関数の $(0,0)$ における連続性を調べよう.

(a) $\displaystyle{f(x,y) = \frac{xy}{x^{2} + y^{2} + 1}}$ (b) $\displaystyle{ f(x,y) = \left\{\begin{array}{cl}
\frac{x^2}{x^2+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$

(c) $\displaystyle{ f(x,y) = \left\{\begin{array}{cl}
\frac{x^2y}{x^4+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$

演習問題

1.
次の集合は開集合,閉集合,有界な集合,連結な集合,または,領域か調べ,境界と閉包を求めよう.

(a) $\displaystyle{D = \{(x,y) : 0 < x^2 + y^2 < 1 \}}$ (b) $\displaystyle{D = \{(x,y) : x y \leq 0 \}}$

2.
$(x,y) \rightarrow (0,0)$ のとき,次の関数の極限値を求めよう.

(a) $\displaystyle{\frac{\sqrt{xy}}{x^2 + y^2}}$ (b) $\displaystyle{\frac{xy}{x^2 + y^2 + y^4} }$ (c) $\displaystyle{\frac{xy}{x^2 + y^2 + y}}$

3.
次の関数の $(0,0)$ における連続性を調べよう.

(a) $\displaystyle{f(x,y) = \left\{\begin{array}{cl}
\frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$

(b) $\displaystyle{ f(x,y) = \left\{\begin{array}{cl}
\frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$

(c) $\displaystyle{ f(x,y) = \left\{\begin{array}{cl}
xy \log(x^2 + y^2), & (x,y) \neq (0,0)\\
-1, & (x,y) = (0,0)
\end{array}\right.}$