不定積分の置換積分と部分積分についてすでに学んだので,ここでは定積分の置換積分と部分積分についての話から始めます.
証明 を の原始関数とすると, は の原始関数である.したがって,微分積分学の基本定理より,
証明
解 とおくと, となるので,被積分関数は で表わすことができます.また積分範囲は のとき, なので となります.よって
定積分でよく使われる積分に次のものがあります.
が奇関数ならば,
ただし,
ここで, が 偶関数(even function) とは において, が成り立つことです.これを のグラフで考えるとy軸対称となります.また, が 奇関数(odd function) とは において, が成り立つことです.これを のグラフで考えると原点対称となります.
証明
(1)
.と表わせるので,
より
(2),(3)の証明は各自に任せます.
(4) 演習問題3.8-2より
なので
について証明しよう.
のときは,
(a) は奇関数であることを示そう.
(b) が偶関数ならばは奇関数であることを示そう.
(c) ならばとなることを示そう.
(d) は偶関数と奇関数の和で表せることを示そう.