1.4 連続関数

1.

(a) 存在しない(b) $\infty$(c) $\sqrt{a}$(d) $-\sqrt{2}$(e) $1$(f) 0(g) 存在しない

2.

連続

3.

$a \in (0, \infty)$のとき $\lim_{x \rightarrow a}\sqrt{x} = \sqrt{a}$を示す.任意の正の数 $\varepsilon$に対して, $\displaystyle{\delta = \frac{\varepsilon}{\sqrt{a}}}$ととると,

$\displaystyle \vert\sqrt{x} - \sqrt{a}\vert = \frac{1}{\sqrt{x} + \sqrt{a}}\vert x - a\vert \leq \frac{\vert x - a\vert}{\sqrt{a}} \leq \varepsilon $

4.

(a) $\max = 11, \min = -1$(b) $\min = 1$

(c) $\displaystyle{\max = \left\{\begin{array}{cl}
4-2a & a \leq 0\\
4-2a & 0 < a...
... -\frac{a^2}{4} & 0 < a < 4\\
-\frac{a^2}{4} & a \geq 4
\end{array} \right.}$

5.

$\displaystyle{f(x) = 2\sin{x} - x}$とおくと,$f(x)$ $\displaystyle{[\frac{\pi}{2},\pi]}$ で連続で $\displaystyle{f(\frac{\pi}{2}) = 2 - \frac{\pi}{2} > 0}$ また $f(\pi) = - \pi < 0$ となるので,中間値の定理より $f(\xi) = 0$となる$\xi$ $\displaystyle{[(\frac{\pi}{2},\pi)}$内に存在する.