Surface integral

Exercise3.4
1.
Let A,B,C be the intersection of the plane $2x + 2y + z = 2$ and $x$-axis,$y$-axis, and $z$-axis, and the surface $S$ be the $\triangle$ ABC. Find the following surface integrals.

(1)
$\int_{S}fdS, \ f = x^2 + 2y + z -1$

(2)
$\int_{S}{\bf A}\cdot\boldsymbol{n}dS, \ {\bf A} = x^2 \boldsymbol{i} + z \boldsymbol{k}$

2.
Let the region $x \geq 0, y \geq 0, x^2 + y^2 \leq a^2$ on the $xy$-plane be $S$.Find the surface integral.

$\displaystyle \int_{S}{\bf A} \times \boldsymbol{n}dS, \ {\bf A} = x\boldsymbol{i} + (x-y)\boldsymbol{j} + (\log{xy})\boldsymbol{k}$

3.
Find the following surface integrals.

$\displaystyle \iint_{S}(3x{\bf i} + 4z{\bf j} + 2y{\bf k}) \cdot {\bf n}dS, S:y...
...eq x \leq 3, y \geq 0, z \geq 0, ({\bf n}\mbox{の}z\mbox{component is positive}
$

4
Find the surface integral.

$\displaystyle \iint_{S}(x{\bf i} + y{\bf j} - 2z{\bf k}) \cdot {\bf n}dS, S:x^2 + y^2 = a^2, 0 \leq z \leq 1$

5.
Let the vector field be $\boldsymbol{F} = y\:\boldsymbol{j} + z\:\boldsymbol{k}$,surface be $\displaystyle{S : x^2 + y^2 = 4 - z , \ z \geq 0}$.Find the surface integral of $\displaystyle{\iint_{S} \boldsymbol{F} \cdot\boldsymbol{n} dS }$

6.
Find the surface integral of the scalar field $f$ on the paraboloid $\displaystyle{S : x^2 + y^2 + z = 4}$ where $z \geq 0$.

$\displaystyle f(x,y,z) = \frac{2y^2 + z}{(4x^2 + 4y^2 + 1)^{1/2}} $

7.
Find $\displaystyle{\iint_{S}x y^2 dS}$, where $S : x+y+z = 1, x \geq 0, y \geq 0, z \geq 0$

8.
Let $A,B,C$ be the intersection of the plane $2x + 2y + z = 2$ and $x$-axis,$y$-axis, $z$-axis and let the $\triangle$ABC be the surface $S$. Find $\int_{S}fdS, \ f = x^2 + 2y + z -1$

9.
Let $S$ be the sphere of the radius $a$ with the center O.Let $\boldsymbol{r} = \overrightarrow{\rm OP}$ be the position vector of $P$.Then by taking the unit normal vector $\boldsymbol{n}$ of the sperical surface $S$ outward, prove the followings.

$\displaystyle \int_{S} \frac{\boldsymbol{r}}{r^3}\cdot\boldsymbol{n}\;dS = 4\pi,\ \ r = \vert\boldsymbol{r}\vert$

10.
Let the vector field be $\boldsymbol{F} = x\:\boldsymbol{i} + y\:\boldsymbol{j} - 2z\:\boldsymbol{k}$ , and the surface be $\displaystyle{S : x^2 + y^2 = a^2 , \ 0 \leq z \leq 1}$ .Then find the surface integral of $\displaystyle{\iint_{S} \boldsymbol{F} \cdot\boldsymbol{n} dS }$.

11.
$\boldsymbol{F} = (2x-z)\boldsymbol{i} + x^2 y\boldsymbol{j} -x^2 z\boldsymbol{k}$,Let the surface $S$ be a bounded part of the plane $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.Then find the surface integral $\iint_{S} \boldsymbol{F}\cdot\boldsymbol{n}dS$.

12.
Let $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z \boldsymbol{k}$, $r= \vert\boldsymbol{r}\vert$. Find the followings.

(1)
$\nabla^2 r^{n} = n(n+1)r^{n-2}$

(2)
$\nabla^2 (\frac{1}{r}) = 0$

13.
Let $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z \boldsymbol{k}$, $r= \vert\boldsymbol{r}\vert$

(1)
Prove that $\displaystyle{\nabla^2 f(r) = \frac{d^{2}f}{dr^2} + \frac{2}{r}\frac{df}{dr}}$よ.

(2)
Find $f(r)$ so that $\displaystyle{\nabla^2 f(r) = 0}$..