演習問題7.3.1

1.
次の境界値問題

\begin{displaymath}\begin{array}{ll}
u_{xx} + u_{yy} = 0 ,  0 < x < L,  0 < y ...
...< y < K\\
u(x,0) = 0,  u(x,K) = f(x),  0 < x < L
\end{array}\end{displaymath}

の解は次の無限級数で与えられることを示せ.
$\displaystyle u(x,y)$ $\displaystyle =$ $\displaystyle \sum_{n=1}^{\infty}u_{n}(x,y)$  
  $\displaystyle =$ $\displaystyle \sum_{n=1}^{\infty}C_{n}\sin{\frac{n\pi x}{L}}\sinh{\frac{n\pi y}{L}}$  

ただし, $C_{n}\sinh{\frac{n\pi K}{L}} = \frac{2}{L}\int_{0}^{L}f(x)\sin{\frac{n\pi x}{L}}dx$.
2.
Laplace方程式を次の条件の元で解け.
(a)

\begin{displaymath}\begin{array}{l}
u(0,y) = 0 = u(L,y),  0 < y < K\\
u_{y}(x,0) = 0,  u(x,K) = f(x),  0 < x < L
\end{array}\end{displaymath}

(b)

\begin{displaymath}\begin{array}{l}
u(0,y) = g(y),  u(L,y) = 0,  0 < y < K\\
u(x,0) = 0 = u(x,K),  0 < x < L
\end{array}\end{displaymath}

3.
Laplace方程式の境界条件が

\begin{displaymath}\begin{array}{l}
u_{x}(0,y) = 0 = u_{x}(L,y),  0 < y < K\\
u(x,0) = 0,  u_{y}(x,K) = f(x)  0 < x < L
\end{array}\end{displaymath}

のとき
$\displaystyle u(x,y)$ $\displaystyle =$ $\displaystyle \sum_{n=0}^{\infty}u_{n}(x,y)$  
  $\displaystyle =$ $\displaystyle D_{0}y + \sum_{n=1}^{\infty}D_{n}\cos{\frac{n\pi x}{L}}\sinh{\frac{n\pi y}{L}},$  

ただし,

$\displaystyle D_{0} = \frac{1}{L}\int_{0}^{L}f(x)dx $

$\displaystyle D_{n}\frac{nx}{L}\cosh{\frac{n\pi K}{L}} = \frac{2}{L}\int_{0}^{L}f(x)\cos{\frac{n\pi x}{L}} dx,  n \geq 1 $

で与えられることを示せ.