演習問題1.6

1.
次の微分方程式を解け.
(a)
$\displaystyle{ y^{\prime}\cos{x} - y\sin{x} + e^{x} = 0}$
(b)
$\displaystyle{ y^{\prime} + 2xy = 2x}$
(c)
$\displaystyle{ xy^{\prime} + y = x\sin{x}}$
(d)
$\displaystyle{ xy^{\prime} + (1 + x)y = e^{-x}\sin{2x}}$
2.
次の初期値問題を解け.
(a)
$\displaystyle{ y^{\prime} + (\cos{x})y = e^{- \sin{x}},  y(0) = 2}$
(b)
$\displaystyle{ (x\log{x})y^{\prime} - y = \log{x},  y(e) = -1}$
(c)
$\displaystyle{ y^{\prime} + y = f(x),  y(0) = 0,  f(x) = \left\{\begin{array}{ll}
1, & 0 \leq x < 1\\
0, & x \geq 1
\end{array} \right. }$
(d)
$\displaystyle{ y^{\prime} + (\tan{x})y = \cos^{2}{x},  y(0) = -1}$
3.
$\displaystyle{ R = 10\Omega, E = 20V, L = \left\{\begin{array}{rl}
5-t,& 0 \leq t\leq 5\\
0,& 5 \leq t
\end{array} \right.}$$RL$回路で$i(0) = 0$のとき,$i(t)$を求めよ.