数列(sequences)

確認問題

1.
次の数列の極限を求めよう.

(a) $\displaystyle{\{a_{n}\} = \{\sqrt{n}\}}$ (b) $\displaystyle{\{a_{n}\} = \{\frac{n+1}{n^{2}}\}}$ (c) $\displaystyle{\{a_{n}\} = \{\frac{n^{2}}{n + 1}\}}$

(d) $\displaystyle{\{a_{n}\} = \{\frac{2^{n} - 1}{2^{n}}\}}$ (e) $\displaystyle{\{a_{n}\} = \{\frac{1}{n} - \frac{1}{n+1}\}}$

2.
次の数列は有界か調べよう.また,単調性についても調べよう.

(a) $\displaystyle{\{a_{n}\} = \{\frac{2}{n}\}}$ (b) $\displaystyle{\{a_{n}\} = \{\sqrt{4 - \frac{1}{n}}\}}$

3.
次の漸化式で定義される数列 $\{a_{n}\}$ の一般項を求めよう.

(a) $\displaystyle{a_{1} = 1, a_{n+1} = \frac{1}{n+1}a_{n},  n \geq 1}$ (b) $\displaystyle{a_{1} = 1, a_{n+1} = a_{n} + 2,  n \geq 1}$

(c) $\displaystyle{a_{1} = 1, a_{n+1} = a_{n} + 2n + 1,  n \geq 1}$

演習問題

1.
次の数列の極限を求めよう.

(a) $\displaystyle{\{a_{n}\} = \{n^4 - 3n^3\}}$ (b) $\displaystyle{\{a_{n}\} = \{\frac{3n^{2}+5}{4n^{3} - 1}\}}$ (c) $\displaystyle{\{a_{n}\} = \{\frac{1 - n}{n - \sqrt{n}}\}}$

(d) $\displaystyle{\{a_{n}\} = \{\frac{n(n+2)}{n+1} - \frac{n^{3}}{n^{2}+1}\}}$ (e) $\displaystyle{\{a_{n}\} = \{\sqrt{n+1} - \sqrt{n}\}}$

2.
$a > 0$ のとき $\displaystyle{\lim_{n \rightarrow \infty}\sqrt[n]{a} = 1}$ を証明しよう.
3.
$\displaystyle{\lim_{n \rightarrow \infty}\sqrt[n]{a} = 1}$を用いて次の極限値を求めよう.

(a) $a > b > 0$のとき, $\displaystyle{\{ (a^n + b^n)^{\frac{1}{n}}\}}$ (b) $\displaystyle{\{a_{n}\} = \{(1+2^{n}+3^{n})^{\frac{1}{n}}\}}$