広義積分(improper integrals)

確認問題

1.
次の広義積分を求めよう.

(a) $\displaystyle{\iint_{\Omega}e^{y/x}dx dy,  \Omega = \{(x,y) : 0 < x \leq 1, 0 \leq y \leq x \}}$

(b) $\displaystyle{\iint_{\Omega}\frac{x}{\sqrt{1 - x - y}}dx dy,  \Omega = \{(x,y) : x+y < 1, x \geq 0, y \geq 0\}}$

(c) $\displaystyle{\iint_{\Omega}\log(x^{2} + y^{2})dxdy,  \Omega = \{(x,y) : x,y \geq 0, x^2 + y^2 \leq 1 \}}$

演習問題

1.
次の広義積分を求めよう.

(a) $\displaystyle{\iint_{\Omega}\frac{dxdy}{(y^2 - x^2)^{1/2}},  \Omega = \{(x,y) : 0 \leq x < y \leq 1\}}$

(b) $\displaystyle{\iint_{\Omega}e^{-(x+y)}dxdy,  \Omega = \{(x,y) : x \geq 0, y \geq 0\}}$

(c) $\displaystyle{\iint_{\Omega}\tan^{-1}(\frac{y}{x})dxdy,  \Omega = \{(x,y) : x,y \geq 0, x^2 + y^2 \leq 1 \}}$

(d) $\displaystyle{\iint_{\Omega}\frac{1}{x^2y^{2}}dxdy,  \Omega = \{(x,y) : x \geq 1, y \geq 1 \}}$

(e) $\displaystyle{\iint_{\Omega}\frac{dxdy}{\sqrt{x - y^2}},  \Omega = \{(x,y) : 0 \leq x \leq 1, y^2 \leq x \}}$

(f) $\displaystyle{\iint_{\Omega}\frac{dxdy}{1 + (x^2 + y^2)^2},  \Omega = \{(x,y) : -\infty < x,y < \infty \}}$

2.
$\iint_{\Omega}e^{-(x^{2} + y^{2})}dx dy = \frac{\pi}{4}$を用いて, $\displaystyle{\Gamma\left(\frac{1}{2}\right) = \int_{0}^{\infty} x^{-\frac{1}{2}}e^{-x} dx = \sqrt{\pi}}$ を示そう.