定積分(definite integral)

確認問題

1.
区分求積法を用いて, $\displaystyle{\int_{0}^{1}x^{2}dx}$を求めよう.
2.
次の定積分を計算しよう.

(a) $\displaystyle{\int_{0}^{1}(x^{2} + 3) dx}$ (b) $\displaystyle{\int_{1}^{2}\frac{x^{2} - 1}{x} dx}$ (c) $\displaystyle{\int_{0}^{1}\sqrt{x^{3}} dx}$ (d) $\displaystyle{\int_{0}^{\pi}\cos{x} dx}$ (e) $\displaystyle{\int_{0}^{\frac{\pi}{2}} \sin{x} dx}$

3.
$\displaystyle{\int_{0}^{1}f(x)dx = 6}$, $\displaystyle{\int_{0}^{2}f(x)dx = 4}$, $\displaystyle{\int_{2}^{5}f(x)dx = 1}$のとき,次の問いに答えよう.

(a) $\displaystyle{\int_{0}^{5}f(x) dx}$ (b) $\displaystyle{\int_{1}^{2}f(x) dx}$ (c) $\displaystyle{\int_{1}^{5}f(x) dx}$ (d) $\displaystyle{\int_{0}^{0}f(x) dx}$

(e) $\displaystyle{\int_{2}^{0}f(x) dx}$

4.
関数 $f(t)$ が連続であるとき, $g(x)$ を求めよう.

(a) $\displaystyle{g(x) = \frac{d}{dx}\int_{1}^{x}\sin{t}dt}$ (b) $\displaystyle{g(x) = \frac{d}{dx}\int_{x}^{1}\cos{t}dt}$ (c) $\displaystyle{g(x) = \frac{d}{dx}\int_{0}^{2x}\sqrt{\sin{t}}dt}$

5.
次の極限値を求めよう.

(a) $\displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{n} + \frac{2}{n} + \cdots + \frac{n}{n} \right)}$ (b) $\displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{2 + \frac{1}{n}} + \frac{1}{2 + \frac{2}{n}} + \cdots + \frac{1}{3} \right)}$

(c) $\displaystyle{\lim_{n \rightarrow \infty} \frac{1}{n}\sum_{i=1}^{n}\sqrt{\frac{i}{n}}}$

演習問題

1.
関数 $f(t)$ が連続であるとき, $g(x)$ を求めよう.

(a) $\displaystyle{g(x) = \frac{d}{dx}\int_{x}^{b}f(t)dt}$ (b) $\displaystyle{g(x) = \frac{d}{dx}\int_{x}^{x+1}f(t)dt}$

(c) $\displaystyle{g(x) = \frac{d}{dx}\int_{0}^{2x}x^{2}f(t)dt}$

2.
次の定積分を計算しよう.

(a) $\displaystyle{\int_{1}^{5}2\sqrt{x-1}dx}$ (b) $\displaystyle{\int_{1}^{2}\frac{2-t}{t^{3}}dt}$ (c) $\displaystyle{\int_{0}^{\frac{\pi}{2}}\cos{x}dx}$ (d) $\displaystyle{\int_{0}^{1}xe^{-x^{2}}dx}$

(e) $\displaystyle{\int_{0}^{\log{2}} \frac{e^{x}}{e^{x} + 1}dx}$

3.
(2) $\int_{a}^{b}cf(x)dx = c\int_{a}^{b}f(x)dx $ ($c$ : 定数)を証明しよう.

(3) $\int_{a}^{b}f(x)dx = -\int_{b}^{a}f(x)dx $を証明しよう.

(4) $\int_{a}^{c}f(x)dx + \int_{c}^{b}f(x)dx = \int_{a}^{b}f(x)dx$を証明しよう.

(5) $[a,b]$ $f(x) \geq g(x)$ならば, $\int_{a}^{b}f(x)dx \geq \int_{a}^{b}g(x)dx$を証明しよう.

4.
次の不等式を証明しよう.

(a) $\displaystyle{\frac{\pi}{4} < \int_{0}^{1}\frac{1}{1 + x^n}dx < 1   (n > 2)}$ (b) $\displaystyle{\frac{1}{2n+2} \leq \int_{0}^{1} \frac{x^n}{1 + x}dx \leq \frac{1}{n}   (n \geq 1)}$

5.
次の極限値を求めよう.

(a) $\displaystyle{\lim_{n \rightarrow \infty} \left(\frac{1}{n+1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n} \right)}$ (b) $\displaystyle{\lim_{n \rightarrow \infty} \sum_{i = 1}^{n} \sqrt{\frac{1}{n^2 + i^2}}}$

(c) $\displaystyle{\lim_{x \rightarrow 0} \int_{0}^{x} \tan{(t^2)}dt}$