3.7 定積分

1.

1 区間$[0,1]$$n$等分する.$x$軸上の点 $\frac{i}{n}$に対応する値 $(\frac{i}{n})^2$を高さとし,底辺が $\frac{i}{n} - \frac{i-1}{n} = \frac{1}{n}$を底辺とする長方形を考える.この長方形を$x = 0$から$x = 1$までの間で加えると,Riemann和とよばれる次の和を得る.

$\displaystyle \sum_{i=1}^{n} \frac{1}{n}\left(\frac{i}{n}\right) = \frac{1}{n}\sum_{i=1}^{n}\left(\frac{i}{n}\right)$

$f(x) = x^2$は区間$[0,1]$で連続なので,
$\displaystyle \int_{0}^{1}x^2 \; dx$ $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{1}{n}\sum_{i=1}^{n}\left(\frac{i}{n}\right)$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty}\frac{1}{n}\cdot \frac{1}{n^2}\sum_{i=1}^{n}i^2$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty} \frac{1}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}$  
  $\displaystyle =$ $\displaystyle \lim_{n \to \infty} \frac{2n^3 + 3n^2 + n}{6n^3} = \frac{1}{3}$  

2.

$F'(x) = f(x)$とすると $\displaystyle{\int_{a}^{b}f(x)\; dx = [F(x)]_{a}^{b} = F(a) - F(b)}$

(a)

$\displaystyle \int_{0}^{1}(x^2 + 3)\; dx = \left[\frac{x^3}{3} + 3x\right]_{0}^{1} = \frac{1}{3} + 3 = \frac{10}{3}$

(b)

$\displaystyle \int_{1}^{2}\frac{x^2 - 1}{x}\; dx$ $\displaystyle =$ $\displaystyle \int_{1}^{2}(x - \frac{1}{x})\; dx$  
  $\displaystyle =$ $\displaystyle \left[\frac{x^2}{2} - \log\vert x\vert\right]_{1}^{2}$  
  $\displaystyle =$ $\displaystyle 2 - \log{2} - \frac{1}{2} = \frac{3}{2} - \log{2}$  

(c)

$\displaystyle \int_{0}^{1}\sqrt{x^3}\; dx = \int_{0}^{1}x^{\frac{3}{2}}\; dx = \left[\frac{2}{5}x^{\frac{5}{2}}\right]_{0}^{1} = \frac{2}{5}$

(d)

$\displaystyle \int_{0}^{\pi}\cos{x}\; dx = [\sin{x}]_{0}^{\pi} = 0$

(e)

$\displaystyle \int_{0}^{\frac{\pi}{2}}\sin{x}\; dx = [-\cos{x}]_{0}^{\frac{\pi}{2}} = \cos{0} = 1$

3.

$\displaystyle \int_{a}^{c}f(x)\; dx + \int_{c}^{b}f(x)\;dx = \int_{a}^{b}f(x)\;dx$

(a)

$\displaystyle \int_{0}^{5}f(x)\; dx = \int_{0}^{2}f(x)\; dx + \int_{2}^{5}f(x)\; dx = 4 + 1 = 5$

(b)

$\displaystyle \int_{1}^{2}f(x)\; dx = \int_{0}^{2}f(x)\; dx - \int_{0}^{1}f(x)\; dx = 4 - 6 = -2$

(c)

$\displaystyle \int_{1}^{5}f(x)\; dx = \int_{1}^{2}f(x)\; dx + \int_{2}^{5}f(x)\; dx = -2 + 1 = -1$

(d)

$\displaystyle \int_{0}^{0}f(x)\; dx = 0$

(e)

$\displaystyle \int_{2}^{0}f(x)\; dx = -\int_{0}^{2}f(x)\; dx = -4$

4.

微積分学の基本定理

$\displaystyle \frac{d}{dx}\int_{a}^{x}f(t)\;dt = f(x)$

$\int_{a}^{x}f(t)\;dt$$x$の関数なので,これを$F(x)$とおくと,左辺は$F'(x)$を求めることと同じである.$f(x)$が物体の速さだとすると, $\int_{a}^{x}f(t)\;dt$は速さ×時間より,時刻$a$から$x$までの間で動いた距離を表す.ということは,左辺は動いた距離の瞬間の変化を表している.しかし,動いた距離の瞬間の変化とは,速さのことである.したがって,右辺と等しい.

(a)

$\displaystyle \frac{d}{dx}\int_{1}^{x}\sin{t}\;dt = \sin{x}$

(b)

$\displaystyle \frac{d}{dx}\int_{x}^{1}\cos{t}\;dt = -\frac{d}{dx}\int_{1}^{x}\cos{t}\;dt = -\cos{x}$

(c) $u = 2x$とおくと, $\frac{d}{dx} = \frac{d}{du}\cdot \frac{du}{dx}$より,

$\displaystyle \frac{d}{dx}\int_{0}^{2x}\sqrt{\sin{t}}\;dt$ $\displaystyle =$ $\displaystyle \frac{d}{dx}\int_{a}^{u}\sqrt{\sin{t}}\;dt$  
  $\displaystyle =$ $\displaystyle \frac{d}{du}(\int_{a}^{u}\sqrt{\sin{t}}\;dt) \frac{du}{dx}$  
  $\displaystyle =$ $\displaystyle \sqrt{\sin{u}} \cdot 2 = 2\sqrt{\sin{2x}}$  

5.

$\displaystyle \lim_{n \to \infty}\frac{1}{n}\sum_{i=1}^{n}f(\frac{i}{n}) = \int_{0}^{1}f(x)\; dx$

(a)

$\displaystyle \lim_{n \to \infty}\frac{1}{n}\sum_{i=1}^{n}\frac{i}{n} = \int_{0}^{1}x\;dx = [\frac{x^2}{2}]_{0}^{1} = \frac{1}{2}$

(b)

    $\displaystyle \lim_{n \to \infty}\frac{1}{n}\left(\frac{1}{2 + \frac{1}{n}} + \frac{1}{2 + \frac{2}{n}} + \cdots + \frac{1}{2 + \frac{n}{n}}\right)$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\frac{1}{2+x}\;dx = [\log\vert 2+x\vert]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \log{3} - \log{2} = \log{\frac{3}{2}}$  

(c)

$\displaystyle \lim_{n \to \infty}\frac{1}{n}\sqrt{\frac{i}{n}} =
\int_{0}^{1}\sqrt{x}\;dx = [\frac{2}{3}x^{3/2}]_{0}^{1} = \frac{2}{3}$