7.5 解答

7.5

1.

(a) V-simpleで$\Omega$を表わすと,

$\displaystyle \Omega = \{(x,y) : 0 \leq x \leq 1, 0 \leq y \leq (1 - x^{2/3})^{3/2}\}$

となる.よって
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iint_{\Omega}dx dy = \int_{x=0}^{1}\int_{y=0}^{(1 - x^{2/3})^{3/2}}dy dx$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(1 - x^{2/3})^{3/2} dx$  

ここで, $x = \cos^{3}{t}$とおくと $dx = -3\cos^{2}{t}\sin{t}dt$

\begin{displaymath}\begin{array}{l\vert lll}
x&0&\to&1\ \hline
t&\frac{\pi}{2}&\to&0
\end{array}\end{displaymath}

より
$\displaystyle I$ $\displaystyle =$ $\displaystyle \int_{\frac{\pi}{2}}^{0}{(1 - \cos^{2}{t})^{3/2}}(-3\cos^{2}{t}\sin{t}) dt$  
  $\displaystyle =$ $\displaystyle -3\int_{\frac{\pi}{2}}^{0}\sin^{4}{t}\cos^{2}{t}dt$  
  $\displaystyle =$ $\displaystyle 3\int_{0}^{\frac{\pi}{2}}\sin^{4}{t}(1 - \sin^{2}{t})dt$  
  $\displaystyle =$ $\displaystyle 3\left(\frac{3\cdot1}{4\cdot2}\frac{\pi}{2} - \frac{5\cdot3\cdot1}{6\cdot4\cdot2}\frac{\pi}{2}\right) = \frac{3\pi}{32}$  

(b) $r = a\cos{3\theta}$の囲む範囲を求める.その方法として,$r = 0$となる角を求めると, $\cos{3\theta} = 0$より, $\theta = \pm\frac{\pi}{6},\pm\frac{\pi}{2},\cdots,$.また, $r = \cos{3\theta}$$x$軸に対称.これより, $\theta = 0$ $\theta = \frac{\pi}{6}$との間の部分の12倍が求める面積となる.$\Omega$ $\theta = 0$ $\theta = \frac{\pi}{6}$との間とおき,極座標で表わすと$\Omega$

$\displaystyle \Gamma = \{(r,\theta) : 0 \leq \theta \leq \frac{\pi}{6}, 0 \leq r \leq a\cos{3\theta}\}$

に移される.よって
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iint_{\Omega}dx dy = \iint_{\Gamma}r dr d\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\frac{\pi}{6}}\int_{0}^{a\cos{3\theta}} rdrd\theta$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\frac{\pi}{6}}\left[\frac{r^2}{2}\right]_{0}^{a\cos{\theta}} d\theta$  
  $\displaystyle =$ $\displaystyle \frac{a^2}{2}\int_{0}^{\frac{\pi}{6}}\cos^{2}{3\theta}d\theta = \frac{a^2}{2}\int_{0}^{\frac{\pi}{6}}\frac{1 + \cos{6\theta}}{2}d\theta$  
  $\displaystyle =$ $\displaystyle \frac{a^2}{4}\left[\theta + \frac{\sin{6\theta}}{6}\right]_{0}^{\frac{\pi}{6}} = \frac{a^2}{6}(\frac{\pi}{6}) = \frac{a^2 \pi}{24}$  

したがって,求める面積は $\displaystyle{\frac{a^2 \pi}{2}}$

(c)

まず,2つの曲線の交点を求めると,

$\displaystyle \frac{8}{x^2 + 4} = \frac{x^2}{4}$

より $x^4 + 4x^2 - 32 = (x^2 + 8)(x^2 - 4) = 0$.よって,$x = \pm 2$.これよりV-simpleを用いて$\Omega$を表わすと

$\displaystyle \Omega = \{(x,y) : -2 \leq x \leq 2, \frac{x^2}{4} \leq y \leq \frac{8}{x^2 + 4}\}$

よって
$\displaystyle I$ $\displaystyle =$ $\displaystyle \iint_{\Omega}dx dy = \int_{-2}^{2}\int_{\frac{x^2}{4}}^{\frac{8}{x^2 + 4}} dy dx$  
  $\displaystyle =$ $\displaystyle \int_{-2}^{2}\left[y\right]_{\frac{x^2}{4}}^{\frac{8}{x^2 + 4}} dx$  
  $\displaystyle =$ $\displaystyle \int_{-2}^{2}\left(\frac{8}{x^2 + 4} - \frac{x^2}{4}\right) dx$  
  $\displaystyle =$ $\displaystyle \frac{a^2}{2}\int_{0}^{\frac{\pi}{6}}\frac{1 + \cos{6\theta}}{2}d\theta$  
  $\displaystyle =$ $\displaystyle \left[8\cdot\frac{1}{2}\tan^{-1}{\frac{x}{2}} - \frac{x^3}{12}\right]_{-2}^{2}$  
  $\displaystyle =$ $\displaystyle 4\tan^{1} - \frac{8}{12} - (4\tan^{-1}{(-1)} - \frac{-8}{12})$  
  $\displaystyle =$ $\displaystyle 2\pi - \frac{3}{4} - (-2\pi + \frac{3}{4}) = 4\pi - \frac{3}{2}$  

2.

(a) 曲面の面積を求めるには,曲面を表わす関数 $z = f(x,y)$と曲面を正射影してできる$\Omega$が必要となる. 問題より,曲面は $z = \pm \sqrt{a^2 - (x^2 + y^2)}$$xy$平面への正射影を取ると,つまり,$z = 0$とおくと

$\displaystyle \Omega = \{(x,y) : x^2 + y^2 \leq a^2\}$

よって

$\displaystyle S = 2\iint_{\Omega}\sqrt{z_{x}^2 + z_{y}^2 + 1} dx dy$

ここで,

$\displaystyle z_{x} = \frac{-2x}{2\sqrt{a^2 - (x^2 + y^2)}},  z_{y} = \frac{-y}{a^2 -(x^2 +y^2)}$

より

$\displaystyle z_{x}^2 + z_{y}^2 + 1 = \frac{x^2 + y^2 + a^2 - (x^2 + y^2)}{a^2 - (x^2 + y^2)} = \frac{a^2}{a^2 - (x^2 + y^2)}$

$\displaystyle S = 2\iint_{\Omega}\frac{a}{\sqrt{a^2 - (x^2 + y^2)}} dx dy$

領域$\Omega$は円なので,極座標に変換すると

$\displaystyle \Gamma = \{(r,\theta) : 0 \leq \theta \leq 2\pi, 0 \leq r \leq a\}$

したがって,求める曲面積は
$\displaystyle S$ $\displaystyle =$ $\displaystyle 2a\iint_{\Gamma}\frac{1}{\sqrt{a^2 - r^2}}rdrd\theta$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}\int_{0}^{r}\frac{r}{\sqrt{a^2 - r^2}}dr d\thet...
...ac{1}{2}}dt\\
= -t^{\frac{1}{2}} + c\\
= -\sqrt{a^2 - r^2}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}\left[-\sqrt{a^2 - r^2}\right]_{0}^{r} d\theta$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}a d\theta = 2a^2 \left[\theta\right]_{0}^{2\pi}$  
  $\displaystyle =$ $\displaystyle 2a^2 (2\pi) = 4a^2 \pi$  

(b) 曲面の面積を求めるには,曲面を表わす関数 $z = f(x,y)$と曲面を正射影してできる$\Omega$が必要となる. 問題より,曲面は $z = \pm \sqrt{a^2 - (x^2 + y^2)}$$xy$平面への正射影を取ると,つまり,$z = 0$とおくと

$\displaystyle \Omega = \{(x,y) : x^2 + y^2 \leq a^2\}$

よって

$\displaystyle S = 2\iint_{\Omega}\sqrt{z_{x}^2 + z_{y}^2 + 1} dx dy$

ここで,

$\displaystyle z_{x} = \frac{-2x}{2\sqrt{a^2 - (x^2 + y^2)}},  z_{y} = \frac{-y}{a^2 -(x^2 +y^2)}$

より

$\displaystyle z_{x}^2 + z_{y}^2 + 1 = \frac{x^2 + y^2 + a^2 - (x^2 + y^2)}{a^2 - (x^2 + y^2)} = \frac{a^2}{a^2 - (x^2 + y^2)}$

$\displaystyle S = 2\iint_{\Omega}\frac{a}{\sqrt{a^2 - (x^2 + y^2)}} dx dy$

極座標に変換すると

$\displaystyle \Gamma = \{(r,\theta) : 0 \leq \theta \leq 2\pi, 0 \leq r \leq a\}$

したがって,求める曲面積は
$\displaystyle S$ $\displaystyle =$ $\displaystyle 2a\iint_{\Gamma}\frac{1}{\sqrt{a^2 - r^2}}rdrd\theta$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}\int_{0}^{r}\frac{r}{\sqrt{a^2 - r^2}}dr d\thet...
...ac{1}{2}}dt\\
= -t^{\frac{1}{2}} + c\\
= -\sqrt{a^2 - r^2}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}\left[-\sqrt{a^2 - r^2}\right]_{0}^{r} d\theta$  
  $\displaystyle =$ $\displaystyle 2a \int_{0}^{2\pi}a d\theta = 2a^2 \left[\theta\right]_{0}^{2\pi}$  
  $\displaystyle =$ $\displaystyle 2a^2 (2\pi) = 4a^2 \pi$  

確かに球の表面積

(c) 曲面の面積を求めるには,曲面を表わす関数 $z = f(x,y)$と曲面を正射影してできる$\Omega$が必要となる. この問題では, $x^2 + y^2 = a^2$で切り取るので,切り取られた曲面の$xy$平面への正射影は

$\displaystyle \Omega = \{(x,y) : x^2 + y^2 \leq a^2\}$

ここで, $z = \pm \sqrt{a^2 -x^2}$より

$\displaystyle S = 2\iint_{\Omega}\sqrt{z_{x}^2 + z_{y}^2 + 1} dx dy$

$\displaystyle z_{x} = \frac{-2x}{2\sqrt{a^2 - x^2}},  z_{y} = 0$

より

$\displaystyle z_{x}^2 + z_{y}^2 + 1 = \frac{x^2}{a^2 - x^2} + 1 = \frac{a^2}{a^2 - x^2}$


$\displaystyle S$ $\displaystyle =$ $\displaystyle 2\iint_{\Omega}\frac{a}{\sqrt{a^2 - (x^2 + y^2)}} dx dy$  
  $\displaystyle =$ $\displaystyle 2\int_{-a}^{a}\int_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} \frac{a}{\sqrt{a^2 - x^2}}dy dx$  
  $\displaystyle =$ $\displaystyle 2\int_{-a}^{a}\left[\frac{ay}{\sqrt{a^2 - x^2}}\right]_{-\sqrt{a^2 - x^2}}^{\sqrt{a^2 - x^2}} dx$  
  $\displaystyle =$ $\displaystyle 4\int_{-a}^{a}a dx = 8a\int_{0}^{a} dx = 8a[x]_{0}^{a} = 8a^2$  

(d) 曲線 $y = f(x),  a \leq x \leq b$$x$軸の回りに回転してできる回転体の表面積$S$

$\displaystyle S = \int_{a}^{b} 2\pi y \sqrt{1 + (y')^2} dx$

よって
$\displaystyle S$ $\displaystyle =$ $\displaystyle \int_{0}^{k}2\pi mx\sqrt{1 + m^2}dx = 2\pi m \sqrt{1 + m^2}\int_{0}^{k}x dx$  
  $\displaystyle =$ $\displaystyle 2\pi m \sqrt{1 + m^2}[x]_{0}^{k} = \pi m \sqrt{1 + m^2} k^2$  

3. 有界閉領域$\Omega$上で連続な関数 $z = f(x,y) > z = f(x,y)$が与えられたとき,$\Omega$の境界 $\partial \Omega$を通り$z$軸に平行な直線群と$f,g$のグラフ曲面で囲まれた立体の体積は

$\displaystyle V = \iint_{\Omega}(f(x,y) - g(x,y))dx dy$

で与えられる.

(a) 問題より求める立体は $\Omega = \{(x,y) : x^2 + y^2 \leq a^2,  x \geq 0\}$の境界を通り$z$軸に平行な直線群と関数$z = 0$$z = x$のグラフで囲まれている.$\Omega$を極座標に変換すると, $x = r\cos{\theta} > 0$より

$\displaystyle \Gamma = \{(r,\theta) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},  0 \leq r \leq a\}$

したがって,
$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}x dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Gamma}r\cos{\theta} r dr d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}}\int_{0}^{a}r^2 \cos{\theta} dr d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}}\cos{\theta}d\theta \int_{0}^{a}r^2 dr$  
  $\displaystyle =$ $\displaystyle 2\left[\sin{\theta}\right]_{0}^{\frac{\pi}{2}}\left[\frac{r^3}{3}\right]_{0}^{a}$  
  $\displaystyle =$ $\displaystyle \frac{2a^3}{3}$  

(b) 問題より求める立体は $\Omega = \{(x,y) : x \leq 1 - y^2,  x \geq 0,  y \geq 0 \}$の境界を通り$z$軸に平行な直線群と関数$z = 0$ $z = 1 - x^2$で囲まれている.H-simpleを用いて$\Omega$を表わすと

$\displaystyle \Omega = \{(x,y) : 0 \leq y \leq 1,  0 \leq x \leq 1 - y^2\}.$

したがって,
$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}(f(x,y) - g(x,y)) dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Omega}(1 - x^2)dx dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\int_{0}^{1 - y^2}(1 - x^2)dx dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}\left[x - \frac{x^3}{3}\right]_{0}^{1 - y^2} dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(1 - y^2 - \frac{(1 - y^2)^3}{3})dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(1 - y^2 - \frac{1}{3}(1 - 3y^2 + 3y^4 - y^6))dy$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}(\frac{2}{3} - y^4 + \frac{1}{3}y^6)dy$  
  $\displaystyle =$ $\displaystyle \left[\frac{2}{3}y - \frac{y^5}{5} + \frac{1}{21}y^7\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \frac{2}{3} - \frac{1}{5} + \frac{1}{21} = \frac{54}{105} = \frac{18}{35}$  

(c) 問題より求める立体は $\Omega = \{(x,y) : x^2 + y^2 \leq ax \}$の境界を通り$z$軸に平行な直線群と関数 $z = -\sqrt{a^2 - (x^2 + y^2)}$ $z = \sqrt{a^2 - (x^2 + y^2)}$で囲まれている.極座標を用いて$\Omega$の境界を表わすと $x^2 + y^2 = ax$より $r^2 = ar\cos{\theta}$.よって, $r = a\cos{\theta}$が0になるのは, $\theta = -\frac{\pi}{2}, \frac{\pi}{2}$.これより

$\displaystyle \Gamma = \{(r,\theta) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},  r \leq a\cos{\theta}\}.$

したがって,
$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}(f(x,y) - g(x,y)) dx dy$  
  $\displaystyle =$ $\displaystyle 2\iint_{\Omega}\sqrt{a^2 - (x^2 + y^2)}dx dy$  
  $\displaystyle =$ $\displaystyle 2\iint_{\Gamma}\sqrt{a^2 - r^2}r dr d\theta$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\frac{\pi}{2}}\int_{0}^{a\cos{\theta}}\sqrt{a^2 - r^2}...
...ac{3}{2}} + c\\
= -\frac{1}{3}(a^2 - r^2)^{\frac{3}{2}} + c
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\frac{\pi}{2}}\left[-\frac{1}{3}(a^2 - r^2)^{\frac{3}{2}}\right]_{0}^{a\cos{\theta}} d\theta$  
  $\displaystyle =$ $\displaystyle -\frac{4}{3}\int_{0}^{\frac{\pi}{2}}((a^2 - a^2 \cos^{2}{\theta})^{\frac{3}{2}} - a^3)d\theta$  
  $\displaystyle =$ $\displaystyle -\frac{4}{3}\int_{0}^{\frac{\pi}{2}}((a^2 \sin^{2}{\theta})^{\frac{3}{2}} - a^3)d\theta$  
  $\displaystyle =$ $\displaystyle -\frac{4}{3}\int_{0}^{\frac{\pi}{2}}(a^3 \sin^{3}{\theta} - a^3)d\theta$  
  $\displaystyle =$ $\displaystyle -\frac{4a^3}{3}(\frac{2}{3} - \frac{\pi}{2})$  

(d) $z = 1 - \sqrt{x^2 + y^2}$と平面$z = x$の交線は, $x = 1 - \sqrt{x^2 + y^2}$.よって,求める立体は $\Omega = \{(x,y) : 0 \leq x \leq 1 - \sqrt{x^2 + y^2} \}$の境界を通り$z$軸に平行な直線群と関数 $z = 1 - \sqrt{x^2 + y^2}$$z = x$で囲まれている.極座標を用いて$\Omega$の境界を表わすと $r\cos{\theta} = 1 - r$より $r = \frac{1}{1 + \cos{\theta}}$$x \geq 0$より, $r\cos{\theta} \geq 0$.よって, $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.これより,

$\displaystyle \Gamma = \{(r,\theta) : -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},  0 \leq r \leq \frac{1}{1 + \cos{\theta}}\}.$

したがって,
$\displaystyle V$ $\displaystyle =$ $\displaystyle \iint_{\Omega}(f(x,y) - g(x,y)) dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Omega}(1 - \sqrt{x^2 + y^2} - x)dx dy$  
  $\displaystyle =$ $\displaystyle \iint_{\Gamma}(1 - r - r\cos{\theta})r dr d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}}\int_{0}^{\frac{1}{1 + \cos{\theta}}}(r - r^2(1 + \cos{\theta})) dr d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}}\left[\frac{r^2}{2} - \frac{r^3}{3}(1 + \cos{\theta})\right]_{0}^{\frac{1}{1 + \cos{\theta}}} d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}}\left(\frac{1}{2(1 + \cos{\theta})^2} - \frac{1}{3(1+\cos{\theta})^3}(1 + \cos{\theta})\right) d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\frac{\pi}{2}} \frac{1}{6(1+\cos{\theta})^2} d\theta \...
...gin{array}{l}
ここで\\
1 + \cos{\theta} = 2\cos^{2}{\frac{\theta}{2}}
\end{array}$  
  $\displaystyle =$ $\displaystyle \frac{1}{3}\int_{0}^{\frac{\pi}{2}}\frac{1}{4\cos^{4}{\theta}} d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{12}\int_{0}^{\frac{\pi}{2}} \sec^{4}{\frac{\theta}{2}} d\theta$  
  $\displaystyle =$ $\displaystyle \frac{1}{12}\int_{0}^{\frac{\pi}{2}} \sec^{2}{\frac{\theta}{2}}\sec^{2}{\frac{\theta}{2}} d\theta$  
  $\displaystyle =$ \begin{displaymath}\frac{1}{12}\int_{0}^{\frac{\pi}{2}} (1 + \tan^{2}{\frac{\the...
...{\pi}{2}\ \hline
t & 0 & \to & 1
\end{array}\end{array}\right)\end{displaymath}  
  $\displaystyle =$ $\displaystyle \frac{1}{12}\int_{0}^{1}(1 + t^2)(2dt)$  
  $\displaystyle =$ $\displaystyle \frac{1}{6}\left[t + \frac{t^3}{3}\right]_{0}^{1}$  
  $\displaystyle =$ $\displaystyle \frac{1}{6}(1 + \frac{1}{3}) = \frac{2}{9}$