2.5 解答

2.5

1.

$ \displaystyle{f(x) = x - \tan{x}}$より,

$\displaystyle f'(x) = 1 - \sec^{2}{x} = 1 - \frac{1}{\cos^{2}{x}} = \frac{\cos^{2}{x} - 1}{\cos^{2}{x}}.$

ここで, $ \cos^{2}{x} \leq 1$で等号は$ x = 0$のときだけ.したがって, $ f'(x) \leq 0$となり,$ f(x)$ $ (-\frac{\pi}{2},\frac{\pi}{2})$で狭義の単調減少関数である.

2.

(a) $ \displaystyle{f(x) = \log{(1 + x)} - \frac{x}{1+x}}$とおくと,$ f(0) = 0$となるので$ x > 0$$ f'(x) > 0$を示す.

$\displaystyle f'(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} = \frac{x}{(1+x)^2} > 0 $

(b) $ \displaystyle{f(x) = x - \tan^{-1}{x}}$とおくと,$ f(0) = 0$となるので$ x > 0$$ f'(x) > 0$を示す.

$\displaystyle f'(x) = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} > 0 $

次に, $ \displaystyle{g(x) = \tan^{-1}{x} - \frac{x}{1+x^2}}$とおくと,$ f(0) = 0$となるので$ x > 0$$ f'(x) > 0$を示す.

$\displaystyle f'(x) = \frac{1}{1+x^2} - \frac{1 - x^2}{(1+x^2)^2} = \frac{2x^2}{(1+x^2)^2} > 0 $

(c) 両辺に対数をとって, $ \pi > e\log{\pi}$を示す. $ f(x) = x - e\log{x}$とおくと $ f(e) = 0$.また$ x > e$

$\displaystyle f'(x) = 1 - \frac{e}{x} = \frac{x - e}{x} > 0 $

よって $ f(\pi) = \pi - e\log{\pi} > 0$

3.

(a) $ x = 1$で極大値7,$ x = 3$で極小値3

(b) $ x = 0$で極小値0, $ x = 2$で極大値 $ \displaystyle{\frac{4}{e^2}}$

\begin{figure}\begin{center}
\includegraphics[width=8cm]{CALCFIG/Fig9-2-6-3.eps}
\end{center}\end{figure}