6.8 陰関数

1.

=2.6zw =1(a) $ \displaystyle{\frac{dy}{dx} = -\frac{4x + 5y}{5x - 6y}}$
$ \displaystyle{\frac{d^{2}y}{dx^{2}} = -\frac{4(5x-6y)^2 - 2(5)(4x+5y)(5x-6y) + (-6)(4x+5y)^2}{(5x-6y)^3}}$

=2.6zw =1(b) $ \displaystyle{\frac{dy}{dx} = \frac{e^{x+y}}{1 - e^{x+y}}}$
$ \displaystyle{\frac{d^{2}y}{dx^{2}} = -\frac{-e^{x+y}(1-e^{x+y})^{2} - 2(-e^{x+y})(-e^{x+y})(1-e^{x+y})+ (-e^{x+y})(-e^{x+y})^{2}}{(1-e^{x+y})^{3}} }$

=2.6zw =1(c) $ \displaystyle{\frac{dy}{dx} = \frac{2x-y}{x+2y}}$
$ \displaystyle{\frac{d^{2}y}{dx^{2}} = -\frac{2(-2y-x)^2 -2(-1)(2x-y)(-2y-x) + (-2)(2x-y)^2}{(-2y-x)^{3}}}$

=2.6zw =1(d) $ \displaystyle{\frac{dy}{dx} = \frac{x+y}{x-y},  \frac{d^{2}y}{dx^{2}} = \frac{2(x^2 + y^2)}{(x - y)^3}}$

2.

(a) $ \displaystyle{\frac{dy}{dx} = -\frac{x-2}{y},  \frac{dz}{dx} = -\frac{2}{z}}$ (b) $ \displaystyle{\frac{dy}{dx} = - \frac{y^2 (z-x)}{x^2 (z-y)},  \frac{dz}{dx} = -\frac{z^2 (y-x)}{x^2 (y-z)}}$

3.

接線 : $ \displaystyle{t = \frac{x-1}{5} = \frac{y - 5}{-\sqrt{2}}}$ 法線 : $ \displaystyle{t = \frac{x-1}{\sqrt{2}} = \frac{y - 5}{5}}$

4.

接平面 : $ \displaystyle{z = -x + y + \frac{\pi}{2}}$ 法線 : $ \displaystyle{t = \frac{x-1}{-1} = \frac{y-1}{1} = \frac{z - \frac{\pi}{2}}{-1}}$

5.

(a) $ \displaystyle{x = \sqrt{\frac{1}{2}}}$のとき極小値 $ -2\sqrt{2}$, $ \displaystyle{x = -\sqrt{\frac{1}{2}}}$のとき極大値$ 2\sqrt{2}$

(b) $ x = 1$で極大値 $ \displaystyle{-\frac{1}{2}}$, $ x = -1$で極小値 $ \displaystyle{\frac{1}{2}}$

(c) $ x = 2 \sqrt[3]{2}$で極大値 $ 2\sqrt[3]{4}$