Elementary Row Operation

Exercise2-4

1. Find the row reduced matrix which is row equivalent to $A = \left(\begin{array}{rrrr}
1&-2&3&-1\\
2&-1&2&2\\
3&0&2&3
\end{array}\right)$

2. Find the rank of the following matrices.

(a) $\left(\begin{array}{rrrr}
2&4&1&-2\\
-3&-6&2&-4
\end{array}\right) $

(b) $\left(\begin{array}{rrr}
2&-1&3\\
1&2&-3\\
3&-4&9
\end{array}\right)$

(c) $\left(\begin{array}{rrrr}
1&-2&3&-1\\
2&-1&2&2\\
3&0&2&3
\end{array}\right)$

3. Given $A = \left(\begin{array}{cc}
2&3\\
3&4
\end{array}\right)$. Apply elmentary operations $(I),(II),(III),(IV)$

$\displaystyle A = \!\! \left(\begin{array}{cc}
\!\!2&\!\!3\\
\!\!3&\!\!4
\end{...
...el{IV}{\rightarrow} \!\! \left(\begin{array}{cc}
1&0\\
0&1
\end{array}\right) $

Find the elementary matrices of $(I),(II),(III),(IV)$. Show the matrix $I_{2}$ as a product of the matrix $A$ and elementary matrices.

4. $A = \left(\begin{array}{rrr}
2&-3&1\\
1&2&-3\\
3&2&-1
\end{array}\right)$ can be reduced to the identiry matrix by using the elementary row operation.Find the product of matrices $P$ so that $PA = I$.

5. Find the dimension of the subspace spanned by the following vectors.

$\displaystyle {\bf v}_{1} = (2,-1,1,3), {\bf v}_{2} = (-1,1,0,1), {\bf v}_{3} = (4,-1,3,11), {\bf v}_{4} = (-2,3,1,1) $