System of linear equations and Inverse matrix

Exercise2-6

1. Solve the following system of linear equations using Gaussian elimination.

(a) $\left\{\begin{array}{rrr}
x-3y&=&5\\
3x-5y&=&7
\end{array}\right . $

(b) $\left\{\begin{array}{rrr}
x+y+z&=&3\\
x+2y+2z&=&5\\
x+2y+3z&=&6
\end{array}\right . $

(c) $\left\{\begin{array}{rrr}
x_{1}+x_{2}+x_{3}+x_{4}&=&1\\
x_{1}+2x_{2}+3x_{3}+4x_{4}&=&2\\
x_{1}+4x_{2}+9x_{3}+16x_{4}&=&6
\end{array}\right .$

2. Determine the value of $k$ so that the following system of linear equations has a solution.
\begin{displaymath}\begin{array}{l}
\left\{\begin{array}{rrr}
x+2y+3z&=&7\\
3x+2y+5z&=&9\\
5x+2y+7z&=&k
\end{array}\right .
\end{array}\end{displaymath}

3. Determine whether the following matrix is regular. If so, find the inverse matrix, (a) $\left(\begin{array}{rrr}
2&3&4\\
1&2&3\\
-1&1&4
\end{array}\right)$

(b) $\left(\begin{array}{rrrr}
0&0&0&1\\
0&0&1&0\\
0&1&0&0\\
1&0&0&0
\end{array}\right)$

4. Determine the value $a$ so that the following matrix is regular.

$\left(\begin{array}{rrr}
2&0&-3\\
1&-1&a\\
5&3&4
\end{array}\right)$

5. Show that the following matrix is regular, and show the following matrix as a product of elementary matrices. $A = \left(\begin{array}{rrr}
2&-1&0\\
4&3&2\\
3&0&1
\end{array}\right)$

6. Suppose that all entries of one row of the square matrix are 0. The show that $A$ is not regular.

7. Suppose that $A,B$ are regular matrices of the order $n$. Then show thatthe product of $AB$ is also regular and satisfies

$\displaystyle (AB)^{-1} = B^{-1}A^{-1} $