Matrices

Exercise2-2

1. For matrices $A = \left(\begin{array}{rr}
2&-3\\
4&2
\end{array}\right), \ \ \ B = \left(\begin{array}{rr}
-1&2\\
3&0
\end{array}\right ) $, evaluate the followings:

(a) $A +B$ (b) $2A - 3B$ (c) $AB, BA$

2. For matrices $A = \left(\begin{array}{rrr}
3&1&7\\
5&2&-4
\end{array}\right), \ \ \ B = \left(\begin{array}{rr}
2&-3\\
3&6\\
4&1
\end{array}\right ) $, find $AB, BA$

3. For the matrix $A = \left(\begin{array}{rrr}
2&3&0\\
1&4&1\\
2&0&1
\end{array}\right)$, calculate $A^{2} - 5A + 6I$

4. Let $A$ and $B$ be symmetric matrices of the order $n$. Show that $A +B$ is a symmetric matrix.

5. Let $A$ and $B$ be symmetric matrices of the order $n$. Find the necessary and sufficient conditions so that $AB$ is a symmetric matrix.

6. Suppose that $A$ is a skew symmetric matrix. Then show that $A^{2}$ is a symmetric marix.

7. Find matrices so that the product of $\left(\begin{array}{ccc}
a_{1}&0&0\\
0&a_{2}&0\\
0&0&a_{3}
\end{array}\right)$ is interchangeable.Here, $a_{1},a_{2},a_{3}$ are different real numbers.

8. Show that any square matrix $A$ can be expressed by the sum of a symmetric matrix and a skew symmetric matrix.

9. Find the product of $A$ and $B$, where $A = \left(\begin{array}{cc\vert c}
1 & 1 & 1\\
2 & -1 & 0\\ \hline
-1 & 0 & ...
...
1 & 2 & 3 & -1\\
3 & -1 & 1 & 0\\ \hline
0 & 0 & -3 & 1
\end{array}\right)$