2.3 Elementary functions

1.

(a) At this level, use $e^{z} = e^{x}(\cos{y} + i\sin{y})$.

$e^{z} = 1$ implies $e^{x}(\cos{y} + i\sin{y}) = 1$. Note that two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. Thus we obtain the following system of equations.

$\left\{\begin{array}{l}
e^{x}\cos{y} = 1\\
e^{x}\sin{y} = 0
\end{array}\right.$

Note that $\cos^{2}{y}+\sin^{2}{y} = 1$. Then

$\displaystyle e^{2x}\cos^{2}{y} + e^{2x}\sin^{2}{y} = e^{2x} = 1$

Thus, $2x = 0$. That is $x = 0$. Putting this into the above equation, we have $\cos{y} = 1,  \sin{y} = 0$. Thus, $y = 2n\pi (n = 0, \pm 1, \pm 2, \ldots )$. Therefore, $z$ saitisfies

$\displaystyle z = x + iy = 2n\pi i $

(b) At this level, use $e^{z} = e^{x}(\cos{y} + i\sin{y})$.

$e^{z} = i$ implies $e^{x}(\cos{y} + i\sin{y}) = i$. Note that two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. Then we have the following system of equations.

$\left\{\begin{array}{l}
e^{x}\cos{y} = 0\\
e^{x}\sin{y} = 1
\end{array}\right.$

Note that $\cos^{2}{y}+\sin^{2}{y} = 1$. Then

$\displaystyle e^{2x}\cos^{2}{y} + e^{2x}\sin^{2}{y} = e^{2x} = 1$

Thus, $2x = 0$. That is $x = 0$. Putting this into the above equation, we have $\cos{y} = 1,  \sin{y} = 0$. Thus, $y = \frac{1}{2} + 2n\pi (n = 0, \pm 1, \pm 2, \ldots )$. Therefore $z$ is

$\displaystyle z = x + iy = (\frac{1}{2} + 2n\pi)i $

(c) At this level, use $e^{z} = e^{x}(\cos{y} + i\sin{y})$.

$e^{z} = -2$ implies $e^{x}(\cos{y} + i\sin{y}) = -2$. Note that two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. Then we have the following system of equations.

$\left\{\begin{array}{l}
e^{x}\cos{y} = -2\\
e^{x}\sin{y} = 0
\end{array}\right.$

Note that $\cos^{2}{y}+\sin^{2}{y} = 1$.

$\displaystyle e^{2x}\cos^{2}{y} + e^{2x}\sin^{2}{y} = e^{2x} = 4$

Then $2x = \log{4}$. That is $x = \log{2}$. Putting this into the above equation, we have $\cos{y} = -1,  \sin{y} = 0$. Thus, $y = \pi + 2n\pi (n = 0, \pm 1, \pm 2, \ldots )$. Therefore, $z$ is

$\displaystyle z = x + iy = \log{2} + (\pi + 2n\pi) i $

(a) Trigonometric functions are once rewritten using exponential functions. After that, the polar form can be changed to the orthogonal form.

When $\sin{2i}$ is expressed using an exponential function, we have

$\displaystyle \sin{z} = \frac{e^{iz} - e^{-iz}}{2i}$

Then

$\displaystyle \sin{2i} = \frac{e^{-2} - e^{2}}{2i} = i\frac{e^2 - e^{-2}}{2}$

(b) Simplify using the addition theorem.


$\displaystyle \sin{\left(\frac{\pi}{2} + i\right)}$ $\displaystyle =$ $\displaystyle \sin{\frac{\pi}{2}}\cos{i} + \cos{\frac{\pi}{2}}\sin{i}$  
  $\displaystyle =$ $\displaystyle \cos{i} = \frac{e^{-1} + e}{2}$  

(c) Simplify using the addition theorem.


$\displaystyle \cos{\left(\frac{\pi}{3} - i\right)}$ $\displaystyle =$ $\displaystyle \cos{\frac{\pi}{3}}\cos{i} + \sin{\frac{\pi}{3}}\sin{i}$  
  $\displaystyle =$ $\displaystyle \frac{1}{2}\cos{i} + \frac{\sqrt{3}}{2}\sin{i}$  
$\displaystyle = \frac{1}{2}\cdot \frac{e^{-1} + e}{2} + \frac{\sqrt{3}}{2}\cdot \frac{e^{-1} - e}{2i}$      
  $\displaystyle =$ $\displaystyle \frac{e^{-1} + e}{4} - i\frac{\sqrt{3}(e - e^{-1})}{4}$  

(d) $tan{z} = \frac{\sin{z}}{\cos{z}}$


$\displaystyle \tan{\left(\frac{\pi}{6} + 2i\right)}$ $\displaystyle =$ $\displaystyle \frac{\sin{\frac{\pi}{6}} + 2i}{\cos{\frac{\pi}{6}} + 2i}$  
  $\displaystyle =$ $\displaystyle \frac{\sin{\frac{\pi}{6}}\cos{2i} + \cos{\frac{\pi}{6}}\sin{2i}} {\cos{\frac{\pi}{6}}\cos{2i} - \sin{\frac{\pi}{6}}\sin{2i}}$  
  $\displaystyle =$ $\displaystyle \frac{\frac{1}{2}\cdot\frac{e^{-2} + e^2}{2} + \frac{\sqrt{3}}{2}...
...{3}}{2}\cdot \frac{e^{-2} + e^2}{2} - \frac{1}{2}\cdot i\frac{e^2 - e^{-2}}{2}}$  
  $\displaystyle =$ $\displaystyle \frac{e^{-2} + e^2 + i\sqrt{3}(e^2 - e^{-2})}{\sqrt{3}(e^{-2} + e^2) - i (e^2 - e^{-2})}$  
  $\displaystyle =$ $\displaystyle \frac{(e^{-2} + e^2 + i\sqrt{3}(e^2 - e^{-2}))(\sqrt{3}(e^{-2} + ...
...}(e^{-2} + e^2) - i (e^2 - e^{-2}))(\sqrt{3}(e^{-2} + e^2) + i (e^2 - e^{-2}))}$  
  $\displaystyle =$ $\displaystyle \frac{\sqrt{3}(e^{-4} + 2 + e^4) - \sqrt{3}(e^4 - 2 + e^{-4}) + 3i(e^4 - e^{-4}) + i(e^{4} - e^{-4})}{3(e^{-4} + 2 + e^{4}) + e^{4} - 2 + e^{-4}}$  
  $\displaystyle =$ $\displaystyle \frac{4\sqrt{3} + 4i(e^{4} - e^{-4})}{4e^{-4} + 4 + e^{4}} = \frac{\sqrt{3} + i(e^{4} - e^{-4})}{e^{4} + 1 + e^{-4}}$  

(e)

$\displaystyle \sin{iy} = \frac{e^{-y} - e^{y}}{2i} = i\frac{e^{y} - e^{-y}}{2} $

(e)

$\displaystyle \cos{iy} = \frac{e^{-y} + e^{y}}{2} $

3.

(a) Note that $\cos^{2}{z} + \sin^{2}{z} = 1$.

Divide $\cos^{2}{z} + \sin^{2}{z} = 1$ by $\cos^{2}{z}$. Then

$\displaystyle \frac{\cos^{2}{z}}{\cos^{2}{z}} + \frac{\sin^{2}{z}}{\cos^{2}{z}} = \frac{1}{\cos^{2}{z}}$

Thus

$\displaystyle 1 + \tan^{2}{z} = \frac{1}{\cos^{2}{z}}$

(b)

$\displaystyle \sin{(-z)} = \frac{e^{-iz} - e^{iz}}{2i} = - \frac{e^{iz} - e^{-iz}}{2i} = - \sin{z} $

(c)

$\displaystyle \cos{(-z)} = \frac{e^{-iz} + e^{iz}}{2} = \frac{e^{iz} + e^{-iz}}{2} = \cos{z} $

4.

(a) Of the $c$ that satisfies $f(z + c) = f(z)$, the one with the smallest $\vert c\vert$ is called the period of the function $f(z)$. Note also that $e^{(z + 2i\pi)} = e^{z}$.

Let $\sin{(z + c)} = \sin{z}$. Then find the value of $c$.

Since $\sin{(z+c)} = \frac{e^{i(z+c)} - e^{-i(z+c)}}{2i}$, let $\sin{(z + c)} = \sin{z}$. Then

$\displaystyle e^{i(z+c)} - e^{-i(z+c)}$ $\displaystyle =$ $\displaystyle e^{iz} - e^{-iz}$  
$\displaystyle e^{i(z+c)} - e^{iz}$ $\displaystyle =$ $\displaystyle -e^{-i(z+c)}e^{-iz}(e^{i(z+c)} - e^{iz})$  

Note that $e^{i(z+c)} - e^{iz}$ is the common term. Thus,

$\displaystyle (e^{i(z+c)} - e^{iz})(1 + e^{-i(z+c)}e^{-iz}) = 0 $

and

$\displaystyle e^{i(z+c)} = e^{iz}  $   or$\displaystyle e^{i(z+c)} = - e^{-iz} $

Now the period of the exponential function is $2\pi i$. Then $e^{ic} = 1$ implies $c = 2n\pi$. Also, $e^{i(z+c)} = - e^{-iz}$ implies $z+c = -z + n\pi$.

5.

(a) Set $\tan{z_{1}} = \tan{z_{2}}$. Then

$\displaystyle \frac{\sin{z_{1}}}{\cos{z_{1}}}$ $\displaystyle =$ $\displaystyle \frac{\sin{z_{2}}}{\cos{z_{2}}}$  
$\displaystyle \frac{\frac{e^{iz_{1}} - e^{-iz_{1}}}{2i}}{\frac{e^{iz_{1}} + e^{-iz_{1}}}{2}}$ $\displaystyle =$ $\displaystyle \frac{\frac{e^{iz_{2}} - e^{-iz_{2}}}{2i}}{\frac{e^{iz_{2}} + e^{-iz_{2}}}{2}}$  
$\displaystyle \frac{i(e^{-iz_{1}} - e^{iz_{1}})}{e^{iz_{1}} + e^{-iz_{1}}}$ $\displaystyle =$ $\displaystyle \frac{i(e^{-iz_{2}} - e^{iz_{2}})}{e^{iz_{2}} + e^{-iz_{2}}}$  
$\displaystyle \frac{i(1 - e^{2iz_{1}})}{e^{2iz_{1}} + 1}$ $\displaystyle =$ $\displaystyle \frac{i(1 - e^{iz_{2}}}{e^{2iz_{2}} + 1}$  
$\displaystyle (1 - e^{2iz_{1}})(e^{2iz_{2}} + 1)$ $\displaystyle =$ $\displaystyle (e^{2iz_{1}} + 1)(1 - e^{2iz_{2}})$  
$\displaystyle e^{2iz_{2}} - e^{2iz_{1}}e^{2iz_{2}} - e^{2iz_{1}}+ 1$ $\displaystyle =$ $\displaystyle e^{2iz_{1}} - e^{2iz_{1}}e^{2iz_{2}} - e^{2iz_{2}}+ 1$  
$\displaystyle e^{2iz_{2}}$ $\displaystyle =$ $\displaystyle e^{2iz_{1}}$  

Thus, $z_{2} = z_{1} + n \pi$. Therefore, $\tan{z}$ has the period $\pi$.