Residue

In the Laurent expansion of $f(z)$ centered on the point $a$, the series part is set to $g(z)$. Then we can write

$\displaystyle f(z) = g(z) + \frac{c_{-1}}{z-a} + \frac{c_{-2}}{(z-a)^2} + \cdots + \frac{c_{-n}}{(z-a)^{n}} + \cdots $

Because $g(z)$ is regular when $C$ is centered on a circle of $a$, $\int_{C}g(z)\;dx = 0$. On the other hand, the series of the principal part converges on $C$. Therefore, if the Laurent expansion of $f(z)$ is term-wise integrated along $C$, then we have
$\displaystyle \int_{C}\frac{1}{(z-a)^{n}}\; dz$ $\displaystyle =$ $\displaystyle \int_{0}^{2\pi}\frac{i\varepsilon e^{i\theta}\;d\theta}{\varepsilon^{n}e^{i\theta}}$  
  $\displaystyle =$ $\displaystyle \frac{i}{e^{n-1}}\int_{0}^{2\pi}e^{(1-n)i\theta}\;d\theta$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{l}
i\theta\mid_{0}^{2\pi}\\
\frac{i}{e^{n-1}}\frac{e^{(1-n)i\theta}}{(1-n)i}\mid_{0}^{2\pi}
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{l}
2\pi i\\
0
\end{array}\right.$  

Exercise5.2
1. Find the residue at the singularity of the following function.
(a)
$\frac{1}{z(z-1)^2}$
(b)
$\frac{z}{(2z+1)(z-2)}$
(c)
$\frac{1}{\sin{z}}$
(d)
$\frac{e^{z}}{(z-1)(z+2)^2}$
2. Evaluate the following integrals.
(a)
$\int_{\vert z\vert=2}\frac{dz}{z(z-1)^2}$
(b)
$\int_{\vert z\vert=1}\frac{z}{(2z+1)(z-2)} dz$
(c)
$\int_{\vert z\vert=1}\frac{dz}{\sin{z}}$
(d)
$\int_{\vert z\vert=3}\frac{e^{z}}{(z-1)(z+2)^2} dz$
3. Evaluate $\frac{e^{2z}}{z^{2}(z^2 + 2z + 2)}$ along the following curves.
(a)
$\vert z\vert = 1$
(b)
$\vert z - i\vert = 2$
(c)
$\vert z\vert = 3$