Laurent's expansion

Theorem 5..1 (Laurent's expansion)   Concentric circles centered on $C_{1}, C_{2}$, their radii are $r_{1}, r_{2}$, and $C$ is any concentric circle between $C_{1}$ and $C_{2}$. The function $f(z)$ is a circular region surrounded by $C_{1}$ and $C_{2}$ with $r_{2} \leq \vert z –a\vert \leq r_{1}$. When monovalent and analytic, for any $z$ satisfying $r_{2} < \vert z -a\vert <r_{1}$,
$\displaystyle f(z)$ $\displaystyle =$ $\displaystyle \sum_{n=-\infty}^{\infty}c_{n}(z-a)^{n}$  
  $\displaystyle =$ $\displaystyle \cdots + \frac{c_{-m}}{(z-a)^{m}} + \cdots + \frac{c_{-2}}{(z-a)^2} + \frac{c_{-1}}{z-a}$  
  $\displaystyle +$ $\displaystyle c_{0} + c_{1}(z-a) + \cdots + c_{n}(z-a)^{n} + \cdots$  

Here coefficients of each term is

$\displaystyle c_{n} = \frac{1}{2\pi i}\int_{C}\frac{f(\zeta)}{(\zeta - a)^{n+1}}\; d\zeta (n = 0, \pm 1, \pm 2, \cdots)$

Exercise5.1
1. For the function $f(z) = \frac{1}{z^2 - 3z + 2}$, find the Laurent's expansion centered at the origin for the points in each of the following regions.
(a)
$\vert z\vert < 1$
(b)
$a < \vert z\vert < 2$
(c)
$\vert z\vert > 2$
2. Find the Laurent's expansion of the following functions at the center of the specified point. What kind of singularity is the center?
(a)
$\frac{1}{z^{3}(z+1)}   [z=0]$
(b)
$\frac{z^3}{(z+1)}   [z = -1]$
(c)
$\frac{e^{z^2}}{z^3}   [z = 0]$
(d)
$\frac{\sin{z}}{z - \pi}   [z = \pi]$