Inverse function of elementary function

Logarithmic function The inverse function of the exponential function of a complex variable is called logarithmic function of the complex variable. That is, between the complex variables $z$ and $w$, there is a relationship so that

$\displaystyle z = e^{w}$

we define

$\displaystyle w = \log{z}$

However, since the exponential function has a period of $2\pi i$,

$\displaystyle z = re^{i\theta} = re^{i(\theta + 2k\pi)} $

and

$\displaystyle w = \log{z} = \log{r} + i(\theta + 2k\pi)$

Therefore, The logarithmic function $\log{z}$ corresponds to an infinite number of different values ​for one complex number $z$. That is, it is an infinite multivalued function. The principal value or principal brunch of $\log{z}$ is given by

$\displaystyle \log{z} = \log{z} + i\theta, 0 \leq \theta < 2\pi$

Exercise2.4
1. Show that $z^{1/2}$ has two branches.

2. Find all of the following values.

(a)
$\log{2}$
(b)
$\log{(-1)}$
(c)
$\log{i}$
(d)
$\log(1+i)$

3. Express the following value in the form of $a + bi$.

(a)
$(-1)^{i}$
(b)
$i^{i}$
(c)
$2^{i}$
(d)
$2^{1+i}$

4. Prove the following formulas.

(a)
$\sin^{-1}{z} = \frac{1}{i}\log{(iz \pm \sqrt{1 - z^2})}$
(b)
$\tan^{-1}{z} = \frac{1}{2i}\log{\frac{1 + iz}{1 - iz}}$

(5) Find the following values.

(a)
$\cos^{-1}{1}$
(b)
$\sin^{-1}{2}$
(c)
$\cos^{-1}{i}$