Evaluating Definite Integral

u-substitution

Theorem 3..11   If $x = \phi(u)$ is differentiable on the open interval $[a,b]$ and $f(x)$ is continuous on the closed interval $[\phi(a), \phi(b)]$, then

$\displaystyle \int_{\phi(a)}^{\phi(b)}f(x)dx = \int_{a}^{b}f(\{\phi(t)\}\phi^{\prime}(t))dt $

Usage If it is impossible to find the indefinite integral of $f(x)$, then the following might help.

NOTE Let $x = \phi(u)$. Then $dx = \phi'(u)du$. Now the limit of intervals must be changed from $x = \phi(a)$ to $u = a$ and $x = \phi(b)$ to $u = b$.

\begin{displaymath}\begin{array}{l\vert lll}
x & \phi(a) & \to & \phi(b)\ \hline
t & a & \to & b
\end{array}\end{displaymath}.

Integration by Parts Let $f(x),g(x)$ be differentiable on the closed interval $[a,b]$. Then

$\displaystyle \int_{a}^{b} f(x)g'(x) = \left[f(x)g(x)\right]_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx $

Usage We let $\sin{x},\cos{x},e^{\pm x}$ be $g'(x)$.

Example 3..16   Evaluate the following integrals.
1. $\displaystyle{\int_{0}^{1}3x^{2}(x^{3}+1)^{4}dx}$ 2. $\displaystyle{\int_{0}^{1}xe^{x} dx}$

SOLUTION 1. Let $t = x^3 + 1$. Then $dt = 3x^2 dx$. Thus we can express the integrand as $t^4$. Furthermore, the limit of integration becomes \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 & \to & 1\ \hline
t & 1 & \to & 2
\end{array}\end{displaymath}.
Thus, $\displaystyle{\int_{0}^{1}3x^{2}(x^{3}+1)^{4}dx = \int_{1}^{2}t^4 dt = \left[\f...
... \right ]_{1}^{2} = \frac{32 - 1}{5} = \frac{31}{5}}\ensuremath{ \blacksquare}$

2. $\left\{\begin{array}{ccc}
f = x && g = e^x\\
&\searrow&\\
f' = 1 &\leftarrow& g' = e^x
\end{array}\right.$ Then

$\displaystyle \int_{0}^{1}xe^x dx = [xe^x]_{0}^{1} - \int_{0}^{1}e^x dx = e - [e^x]_{0}^{1} = e - (e - 1) = 1.$

If we let $u = e^x$, then $du = e^x dx$ and $x = \log{u}$. Thus we can not solve this by u-substitution directly.

Exercise 3..16   Evaluate the following definite integrals.

$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1+\cos{x}}}dx$

Let $u = \sqrt{1+ \cos{x}}$.

SOLUTION Let $\displaystyle{u = \sqrt{1+\cos{x}}}$. Then, $\displaystyle{u^2 = 1+\cos{x}}$ and $\displaystyle{2udu = -\sin{x}dx}$. $\displaystyle{dx = -\frac{2udu}{\sin{x}}}$. Now need to express $\sin{x}$ by $t$. $\displaystyle{u = \sqrt{1+\cos{x}}}$, $\displaystyle{\cos{x} = u^2 -1}$. Thus,

Since $\cos^{2}{x} + \sin^{2}{x} = 1$, $\sin^{2}{x} = 1 - \cos^{2}{x}$. Thus, $\sin{x} = \pm \sqrt{1 - \cos^{2}{x}}$. Note $0 \leq x \leq 1$. Thus $\sin{x} = \sqrt{1 - \cos^{2}{x}}$.

$\displaystyle \sin{x} = \sqrt{1 - \cos^{2}{x}} = \sqrt{1- (t^2 -1)^2} = \sqrt{t^2(2 - t^2)}.$

For $t > 0$, $\sin{x} = t\sqrt{2-t^2}$. \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 \to \frac{\pi}{2}\ \hline
t & \sqrt{2} \to 1
\end{array}\end{displaymath}. Thus, $\displaystyle{dx = -\frac{2tdt}{\sin{x}} = -\frac{2tdt}{t\sqrt{2-t^2}}}$
Check
$1-(t^2-1)^2 = (1+t^2-1)(1-(t^2-1)) = t^2(2-t^2)$.

$\displaystyle \int_{0}^{1}\frac{1}{\sqrt{1+\cos{x}}}dx = -2\int_{\sqrt{2}}^{1}\frac{1}{t\sqrt{2-t^2}}dt = 2\int_{1}^{\sqrt{2}}\frac{1}{t\sqrt{2-t^2}}dt.$

This integral is in the form $a^2 - x^2$, $\displaystyle{t = \sqrt{2}\sin{\theta}}$, $\displaystyle{dt = \sqrt{2}\cos{\theta}d\theta}$, $\displaystyle{\sqrt{2-t^2} = \sqrt{2}\cos{\theta}}$.

$\sqrt{2-t^2} = \sqrt{2-(\sqrt{2}\sin{\theta})^2} = \sqrt{2(1-\sin^{2}{\theta})} = \sqrt{2}\cos{\theta}$

Figure 3.10: Check
% latex2html id marker 47374
\includegraphics[width=3.5cm]{SOFTFIG-3/enshu3-16.eps}

Since the limit of integral is \begin{displaymath}\begin{array}{c\vert cccc}
t & 1 & \to & \sqrt{2}\ \hline
\theta & \frac{\pi}{4} & \to & \frac{\pi}{2}
\end{array}\end{displaymath},

$\displaystyle \int_{1}^{\sqrt{2}}\frac{1}{t\sqrt{2-t^2}}dt = 2\int_{\frac{\pi}{...
...ta = \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{1}{\sin{\theta}}d\theta.$

By trigonometric integration[1]2. multiply both numerator and denominator by $\sin{\theta}$ ,
$\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{1}{\sin{\theta}}d\theta$ $\displaystyle =$ $\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{\...
...int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{1-\cos^2{\theta}}d\theta$  

Now let $u = \cos{\theta}$. Then $du = -\sin{\theta}d\theta$, \begin{displaymath}\begin{array}{c\vert ccc}
\theta & \frac{\pi}{4} & \to \frac{\pi}{2}\ \hline
u & \frac{\sqrt{2}}{2} & \to & 0
\end{array}\end{displaymath}. Thus,
$\displaystyle \sqrt{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\frac{\sin{\theta}}{1-\cos^2{\theta}}d\theta$ $\displaystyle =$ $\displaystyle \sqrt{2}\int_{\frac{\sqrt{2}}{2}}^{0}\frac{-1}{1-u^2}\;du = \sqrt{2}\int_{0}^{\frac{\sqrt{2}}{2}}\frac{1}{1-u^2}\; du$  
  $\displaystyle =$ $\displaystyle \frac{\sqrt{2}}{2}\left[\log\vert\frac{1+u}{1-u}\vert\right]_{0}^...
...1 + \frac{\sqrt{2}}{2}}{1 - \frac{\sqrt{2}}{2}}\vert\ensuremath{ \blacksquare}$  

u-substitution
In u-substitution, complexity of integration depends on the choice of $u$. Alternative Solution $1 + \cos{x} = 2\sin^{2}{\frac{x}{2}}$


$\displaystyle \int_0^{\frac{\pi}{2}}\frac{1}{\sqrt{1 + \cos{x}}}\:dx$ $\displaystyle =$ $\displaystyle \int_0^{\frac{\pi}{2}}\frac{1}{\sqrt{2}\cos{\frac{x}{2}}}\:dx = \...
...rt{2}}\int_0^{\frac{\pi}{2}}\frac{\cos{\frac{x}{2}}}{\cos^{2}{\frac{x}{2}}}\:dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{\sqrt{2}}\int_0^{\frac{\pi}{2}}\frac{\cos{\frac{x}{2}}}{...
...rac{x}{2}}}\:dx = \frac{1}{\sqrt{2}}\int_0^{\frac{\sqrt{2}}{2}}\frac{dt}{1-t^2}$  
  $\displaystyle =$ $\displaystyle \frac{\sqrt{2}}{2}\left[\log\vert\frac{1+t}{1-t}\vert\right]_0^{\...
...1 + \frac{\sqrt{2}}{2}}{1 - \frac{\sqrt{2}}{2}}\vert\ensuremath{ \blacksquare}$  

Properties of Definite Integral Suppose that $f(x)$ is continuous on the limit of integration.
1. If $f(x)$ is even function, then $\displaystyle{\int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx}$

2. If $f(x)$ is odd function, then $\displaystyle{\int_{-a}^{a}f(x)dx = 0}$

3. $\displaystyle{\int_{0}^{\frac{\pi}{2}}f(\cos{x})dx = \int_{0}^{\frac{\pi}{2}}f(\sin{x})dx}$

$4.  \displaystyle{I_{n} = \int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\f...
...2} & n \mbox{even} \\
\frac{(n-1)!!}{n!!} & n \mbox{odd}
\end{array}\right.}$
where $\displaystyle{n!! = \left\{\begin{array}{ll}
n\cdot(n-2)\cdot(n-4)\cdots4\cdot2...
...even}\\
n\cdot(n-2)\cdot(n-4)\cdots3\cdot1 & n \mbox{odd}
\end{array}\right.}$

Even/Odd Functions $f(x)$ is even function means that $f(-x) = f(x)$ and the graph of a function $f(x)$ is symmetric with respect to the $y$-axis. Thus, $\int_{-a}^{a}f(x)dx = 2\int_0^a f(x)dx$.
$f(x)$ is odd function means that $f(-x) = -f(x)$ and the graph of a function $f(x)$ is symmetric with respect to the $x$-axis. Thus, $\int_{-a}^{a}f(x)dx = 0$.

Example 3..17   Show the properties of definite integral1,3,4 .

SOLUTION 1. $\int_{-a}^{a}f(x)dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a}f(x) dx $. Now $f(x)$ is even function and $f(x) = f(-x)$. Thus,

$\displaystyle \int_{-a}^{a}f(x)dx = \int_{-a}^{0}f(-x)dx + \int_{0}^{a}f(x) dx. $

Here let $t = -x$. Then $dt = - dx$. \begin{displaymath}\begin{array}{c\vert ccc}
x & -a &\to & 0\ \hline
t & a &\to &0
\end{array}\end{displaymath}. $\int_{-a}^{0}f(-x)dx = -\int_{a}^{0}f(t)dt = \int_{0}^{a}f(t) dt$. Thus,

$\displaystyle \int_{-a}^{a}f(x)dx = 2 \int_{0}^{a}f(x) dx\ensuremath{ \blacksquare}$

3. Let $t = \cos{x}$. Then

Since $0 \leq x \leq \frac{\pi}{2}$, we have $\sin{x} \geq 0$ and $\sin{x} = \sqrt{1 - \cos^{2}{x}} = \sqrt{1 - t^2}$. $dt = -\sin{x}dx = -\sqrt{1 - t^2}dx$, \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 & \to & \frac{\pi}{2}\ \hline
t & 1 & \to & 0
\end{array}\end{displaymath},

Check
$\int_a^b f(x)dx = -\int_b^a f(x)dx$.

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_1^0 f(t)(-\frac{1}{\sqrt{1-t^2}})dt = \int_0^1 \frac{f(t)}{\sqrt{1-t^2}}dt . $

Note the insdie of the square root is the difference of two squares. Thus $t = \sin{u}, (0 \leq t \leq 1)$ and $dt = \cos{u}du$. Also, $u = \sin^{-1}{t}$, $du = \frac{1}{\sqrt{1-t^2}}\:dt$, \begin{displaymath}\begin{array}{c\vert ccc}
t & 0 & \to & 1\ \hline
u & 0 & \to & \frac{\pi}{2}
\end{array}\end{displaymath}. Thus,

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_0^1 \frac{f(t)}{\sqrt{1-t^2}}dt = \int_0^\frac{\pi}{2}f(\sin{u})du.$

Finally, $\int_0^\frac{\pi}{2}f(\sin{u})du = \int_0^\frac{\pi}{2}f(\sin{x})dx$

$\displaystyle \int_0^\frac{\pi}{2}f(\cos{x})dx = \int_0^\frac{\pi}{2}f(\sin{x})dx\ensuremath{ \blacksquare}$

4. By 3. $\int_{0}^{\pi/2}\sin^{n}{x}dx = \int_{0}^{\pi/2}\cos^{n}{x}dx$. We show $\int_{0}^{\pi/2}\sin^{n}{x}dx$ .
For $n \geq 2$,

Check
$f(x) = \sin^{n-1}{x}, g'(x) = \sin{x}$, $f'(x) = (n-1)\sin^{n-2}{x}\cos{x}, g(x) = -\cos{x}$.


$\displaystyle I_{n}$ $\displaystyle =$ $\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x}\sin{x}dx = -\left[\sin^{n-1}{x}\cos{x}\right]_{0}^{\frac{\pi}{2}}$  
  $\displaystyle +$ $\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}\cos^{2}{x}dx$  

Note that $\sin{0} = 0, \cos(\frac{\pi}{2}) = 0$. Thus $\left[\sin^{n-1}{x}\cos{x}\right]_{0}^{\frac{\pi}{2}} = 0$. Now we take care of the rest.
$\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}\cos^{2}{x}dx$ $\displaystyle =$ $\displaystyle (n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}{x}(1-\sin^{2}{x})dx$  
  $\displaystyle =$ $\displaystyle (n-1)(I_{n-2} - I_{n}).$  

Then we have the recurrence ralation $\displaystyle{I_{n} = \frac{n-1}{n}I_{n-2}}$. Note $I_{0} = \int_{0}^{\frac{\pi}{2}}dx = \frac{\pi}{2},   I_{1} = \int_{0}^{\frac{\pi}{2}}\sin{x}dx = 1$,
Check
$I_2 = \frac{2-1}{2}I_{2-2} = \frac{1}{2}\cdot \frac{\pi}{2}$
$I_3 = \frac{3-1}{3}I_{3-2} = \frac{2}{3}\cdot 1$
$I_4 = \frac{4-1}{4}I_{4-2} = \frac{3}{4}\cdot \frac{\pi}{4}$
$I_5 = \frac{5-1}{5}I_{5-2} = \frac{4}{5}\cdot \frac{2}{3}$.

$\displaystyle I_{n}$ $\displaystyle =$ $\displaystyle \frac{I_{n}}{I_{n-2}}\frac{I_{n-2}}{I_{n-4}}\cdots\frac{I_{2}}{I_{0}}I_{0}$  
  $\displaystyle =$ $\displaystyle \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{1}{2} \frac{\pi}{2} = \frac{(n-1)!!}{n!!}\frac{\pi}{2}, n {\rm even}$  
$\displaystyle I_{n}$ $\displaystyle =$ $\displaystyle \frac{I_{n}}{I_{n-2}}\frac{I_{n-2}}{I_{n-4}}\cdots\frac{I_{3}}{I_{1}}I_{1}$  
  $\displaystyle =$ $\displaystyle \frac{n-1}{n} \frac{n-3}{n-2} \cdots \frac{2}{3} = \frac{(n-1)!!}{n!!},  n {\rm odd} \ensuremath{ \blacksquare}$  

Exercise 3..17   Evaluate the following integral.

$\displaystyle \int_{0}^{2}\sqrt{4-x^2} dx$

SOLUTION This problem can be thought of finding the area of a quarter of circle. Thus it's area is $\pi$. The inside of square root is of the form $a^2 - x^2$. Let $x = 2\sin{t}$ and $t = \sin^{-1}{\frac{x}{2}}$, $dx = 2\cos{t}dt, x^2 = 4\sin^2{t}, \sqrt{4-x^2} = 2\cos{t}$, \begin{displaymath}\begin{array}{c\vert ccc}
x & 0 \to & 2\ \hline
t & 0 \to & \frac{\pi}{2}
\end{array}\end{displaymath}. Thus


$\displaystyle \int_{0}^{2}\sqrt{4-x^2} dx$ $\displaystyle =$ $\displaystyle \int_0^\frac{\pi}{2}2\cos{t}(2\cos{t})dt = 4\int_0^\frac{\pi}{2}\cos^2{t}dt$  
  $\displaystyle =$ $\displaystyle 4 \frac{1!!}{2!!}\frac{\pi}{2} = \pi\ensuremath{ \blacksquare}$  

Exercise A

1.
Evaluate the following integrals

(a) $\displaystyle{\int_{-2}^{2}\sin{x} dx}$ (b) $\displaystyle{\int_{-1}^{1}
\sin^{3}{x} dx}$ (c) $\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^3{x}dx}$ (d) $\displaystyle{\int_{0}^{\pi}\cos{2x} dx}$

(e) $\displaystyle{\int_{-1}^{1}\sqrt{x+1}dx}$

Exercise B

1.
Evaluate the following integrals

(a) $\displaystyle{\int_{0}^{\frac{\pi}{2}}\cos^{4}{x}\sin{x}dx}$ (b) $\displaystyle{\int_{0}^{\frac{\pi}{2}}\frac{\sin{x}}{\sqrt{1+\cos{x}}} dx}$ (c) $\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^{4}{x}dx}$

(d) $\displaystyle{\int_{-1}^{1}x^2 \cos{x} dx}$ (e) $\displaystyle{\int_{0}^{\pi}\cos{nx}dx}$ (n ????) (f) $\displaystyle{\int_{0}^{1}\frac{x^{2}}{\sqrt{4-x^{2}}}\;dx}$

(g) $\displaystyle{\int_{0}^{1}xe^{x} dx}$

2.
Show that $\displaystyle{\int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\cos^{n}{x}dx}$

3.
Let $f(x)$ be a continuous function on the interval $(-\infty,\infty)$. Then answer the following question concerning the function $\displaystyle{F(x) = \int_{-x}^{x}f(t)dt}$

(a) Show that $F(x)$ is an odd function

(b) Show that $f(x)$ is even function implies that $f'(x)$ is an odd function.

(c) Show that $f(x) = \int_{-x}^{x}f(t)dt$ implies that $f(x) = 0$

(d) Show that $f(x)$ can be represented by a sum and a difference of functions