Curve Sketching

  1. Existence of symmetry
  2. Domain of a function
  3. Intersection of a curve with $x$-axis
  4. Asymptotic line
  5. Incereasing/Decreasin, concavity, Critical point, inflection point

Asymptote Asymptote is a line for which a graph of function is getting close. Thus we have two cases. One is a line for which the denominator of a function is 0. The other one is that $\vert x\vert$ approaches infinity.

Example 2..19   Sketch the graph of function $\displaystyle{f(x) = x^5 - 5x^4 + 1}$.

SOLUTION
1. $f(-x) = - x^5 - 5x^4+ 1$ implies no symmetry.
2. ${\rm Dom}(f) = (-\infty,\infty)$
3. $f(-1) = -5, f5. = 1$ implies this function cross $x$-axis at least once
4. $\lim_{x \to \infty}f(x) = \infty$, $\lim_{x \to -\infty}f(x) = -\infty$
5. By example2.22
  \begin{displaymath}\begin{array}{\vert c\vert c\vert c\vert c\vert c\vert c\vert...
...\rm IP} & {\rm up} & {\rm up} & {\rm up} \ \hline
\end{array} \end{displaymath}
We now sketch the graph of function. $ \blacksquare$

Figure 2.11: Example2-19
\includegraphics[width=4.0cm]{CALCFIG/Fig2-5-2.eps}

Exercise 2..19   Sketch the graph of a function $\displaystyle{y = \frac{x^3}{x^2 - 2}}$.

SOLUTION

1. $f(-x) = \frac{(-x)^3}{(-x)^2 - 2} = -f(x)$ implies that $f$ is symmetric
  with respect to the origin.
2. ${\rm Dom}(f) = \{x:x \neq \sqrt{2}\}$.
3. To find an intersection with $x$-axis, set $y = 0$.
  Then we have $x = 0$.
4. When the denominator is 0, we have $x = \pm \sqrt{2}$
  as asymptotes. Next we can express the function as
  $\displaystyle{y = \frac{x^3}{x^2 - 2} = \frac{x(x^2 -2) + 2x}{x^2-2} = x + \frac{2x}{x^2 - 2} }$
  Thus $y = x$ is asymptote.

Figure 2.12: Division
\includegraphics[width=3cm]{SOFTFIG-2/longdivision.eps}

By quotient rule for differentiation,

Figure 2.13: Exercise2-19
\includegraphics[width=4.0cm]{CALCFIG/Fig2-6-1.eps}


$\displaystyle y^{\prime}$ $\displaystyle =$ $\displaystyle \frac{(x^3)'(x^2 -2) - x^3(x^2 - 2)'}{(x^2 - 2)^2} = \frac{x^2 (x^2 - 6)}{(x^2 - 2)^2},$  
$\displaystyle y''$ $\displaystyle =$ $\displaystyle \frac{(x^2)'(x^2 -6) - x^2(x^2 - 6)'}{(x^2 -2)^4} = \frac{4x(x^2 + 6)}{(x^2 - 2)^3}$  

implies $x = 0, \pm \sqrt{6}$ are the candidates for a critical point. Now write a concavity table, we have

\begin{displaymath}\begin{array}{c\vert ccccccccccccc}
x & & -\sqrt{6} & & - \sq...
...rrow & & \searrow & \frac{3\sqrt{6}}{2} & \nearrow
\end{array} \end{displaymath}

Thus, the sketch of graph is as follows $ \blacksquare$