Limit of function

Exercise

1.
Determine whether the following sets are open set, closed set, bounded set, connected set, or region. Then find the boundary and closure.
(a)
$\displaystyle{D = \{(x,y) : 0 < x^2 + y^2 < 1 \}}$
(b)
$\displaystyle{D = \{(x,y) : x y \leq 0 \}}$
2.
For $(x,y) \rightarrow (0,0)$, find the limit of the following functions.
(a)
$\displaystyle{\frac{\sqrt{xy}}{x^2 + y^2}}$
(b)
$\displaystyle{\frac{xy}{x^2 + y^2 + y^4} }$
(c)
$\displaystyle{\frac{xy}{x^2 + y^2 + y}}$
3.
Determine the folowing functions are continuous at $(0,0)$.
(a)
$\displaystyle{f(x,y) = \left\{\begin{array}{cl}
\frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$
(b)
$\displaystyle{\ f(x,y) = \left\{\begin{array}{cl}
\frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$
(c)
$\displaystyle{\ f(x,y) = \left\{\begin{array}{cl}
xy \log(x^2 + y^2), & (x,y) \neq (0,0)\\
-1, & (x,y) = (0,0)
\end{array}\right.}$