6.1 Answer

6.1

1.

(a)

$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : x^2 - y^2 \in {\cal R}\} = {\cal R}^2$  

Let $x= 0 $. Then $z = f(x,y) = -y^2$. Thus, a parabola on $y-z$ plane. Let $y=0$. Then $z = f(x,y) = x^2$. Thus a parabola on $x-z$ plane. Let $z = c$. Then $z = f(x,y) = x^2 - y^2 = c$. Thus, a hyperbola on the plane $z = c$.

(b)


$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : \frac{x^2}{x^2 + y^2} \in {\cal R}\} = {\cal R}^2 - (0,0)$  

Let $x= 0 $. Then $z = f(x,y) = 0$. Let $y=0$. Then $z = f(x,y) = 1$. Thus a line on $x-z$ plane. Let $z = c$. Then $z = f(x,y) = \frac{x^2}{x^2 + y^2} = c$. Thus $x^2 = c(x^2 + y^2)$ $(1 - c)x^2 - y^2 = 0$ and $y = \pm \sqrt{(1-c)}x$

(c)


$\displaystyle D(f)$ $\displaystyle =$ $\displaystyle \{(x,y) : f(x,y) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : \log(1 - xy) \in {\cal R}\}$  
  $\displaystyle =$ $\displaystyle \{(x,y) : xy < 1\}$  

Let $z = c$. Then $z = f(x,y) = \log(1 - xy) = c$. Thus $1 - xy = e^{c}$ $y = \frac{1 - e^{c}}{x}$.Now changing the value of $c$, draw a graph.