Triple integrals

Exercise

1.
For $\displaystyle{T = \{(x,y,z) : 0 \leq x \leq y \leq z \leq 1 \}}$Cevaluate the following triple integrals.
(a)
$\displaystyle{\iiint_{T} dx dydz}$
(b)
$\displaystyle{\iiint_{T}e^{x+y+z} dxdydz }$
2.
Evaluate the following triple integrals
(a)
$\displaystyle{\iiint_{T} dx dydz, \ T = \{(x,y,z):\sqrt{x^2 + y^2} \leq z \leq 3 \}}$
(b)
$\displaystyle{\iiint_{T}(x^2 + y^2 + z^2) dxdydz, T = \{(x,y,z):\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leq 1\} }$
3.
Find the centroid of the following regions.D
(a)
CThe region is bounded by $y = x$ and $\displaystyle{y = x^2}$ with the constant density.
(b)
The region is the semisphere $\displaystyle{x^2 + y^2 + z^2 \leq a^2, z \geq 0}$ with the density proportional to the distance from the center.
(c)
The cone with the radius $a$ and the height $h$ with constant density.
(d)
The region expressed by $\displaystyle{ax \leq x^2 + y^2 \leq a^2}$.
(e)
The triangular pyramid $T = \{(x,y,z):0 \leq x \leq 1, 0 \leq y \leq 1-x, 0 \leq z \leq 1-x-y\}$. Find $\bar y, \bar z$
(f)
The region is expressed by $\displaystyle{ax \leq x^2 + y^2 \leq a^2}$with the density is proportional to the distance from the origin.