Differentiation of composite functions

Exercise

1.
Find $\displaystyle{\frac{dz}{dt}}$.where $f$ is in $C^{1}$
(a)
$\displaystyle{z = \log{(x^2 + y^2)}, x = t + \frac{1}{t}, y = t(t-1)}$
(b)
$\displaystyle{z = f(t^2,e^t)}$
(c)
$\displaystyle{z = f(2t, 4t^2)}$
(d)
$\displaystyle{z = x^2 - 2y^2, x = \cos{t}, y = \sin{t}}$
2.
Find $\displaystyle{\frac{\partial z}{\partial r}, \ \frac{\partial z}{\partial s}}$.
(a)
$\displaystyle{z = \tan^{-1}{\frac{y}{x}}, x = r^3 - 3rs^2, \ y = 3r^2 s - s^3}$
(b)
$\displaystyle{z = \log{\frac{y}{x}}, x = (r-1)^2 + s^2, y = (r+1)^2 + s^2}$
3.
For $\displaystyle{z = f(x,y), x = r\cos{\theta}, y = r\sin{\theta}}$g,show the following.

$\displaystyle z_{r} = z_{x}\cos{\theta} + z_{y}\sin{\theta}, \ z_{\theta} = r(-z_{x}\sin{\theta} + z_{y}\cos{\theta}). $