3.9 Answer

3.9

1.

Note that we use the following symbols.

$\displaystyle f(a +0) = \lim_{x \to a+}f(x), \ f(a-0) = \lim_{x \to a-}f(x)$

(a) To integrate $\int_{0}^{1}\frac{dx}{\sqrt{1-x}}$, we need to know $f(x) = \frac{1}{\sqrt{1-x}}$ is continuous on $[0,1)$.

$\displaystyle \int_{0}^{1}\frac{dx}{\sqrt{1-x}} = \int_{0}^{1-}\frac{dx}{\sqrt{1-x}}$

Then we let $t = \sqrt{1-x}$. Then $t^2 = 1-x$ and $2tdt = -dx$.Note that

\begin{displaymath}\begin{array}{l\vert lll}
x&0 &\rightarrow & 1-0\\ \hline
t&1 &\rightarrow & 0+
\end{array}\end{displaymath}

Then


$\displaystyle \int_{0}^{1-}\frac{dx}{\sqrt{1-x}}$ $\displaystyle =$ $\displaystyle \int_{1}^{0+}{\frac{-2tdt}{t}}$  
  $\displaystyle =$ $\displaystyle \int_{1}^{0+}(-2)\ dt \ \ (t$is never 0$\displaystyle )$  
  $\displaystyle =$ $\displaystyle -2t\mid_{1}^{0+} = -2(\lim_{t \to 0+}t - 1)= 2$  

(b) $f(x) = \frac{1}{x}$ is continuous on $(0,1]$. Then

$\displaystyle \int_{0}^{1}\frac{1}{x}\ dx = \int_{0+}^{1}\frac{1}{x}\ dx$

Thus,
$\displaystyle \int_{0+}^{1}\frac{1}{x}\ dx$ $\displaystyle =$ $\displaystyle \log\vert x\vert\mid_{0+}^{1} = \log{1} - \lim_{x \to 0+}\log\vert x\vert = \infty$  

(c) $f(x) = \log{x}$ is continuous on $(0,1]$. Then

$\displaystyle \int_{0}^{1}\log{x}\ dx = \int_{0+}^{1}\log{x}\ dx$

Using the integration by parts, we have

$\displaystyle \left(\begin{array}{ll}
f(x) = \log{x} & g'(x) = 1\\
f'(x) = \frac{1}{x} & g(x) = x
\end{array}\right)$

Thus,
$\displaystyle \int_{0+}^{1}\log{x}\ dx$ $\displaystyle =$ $\displaystyle x\log{x}\mid_{0+}^{1} - \int_{0+}^{1}dx$  
  $\displaystyle =$ $\displaystyle (x\log{x} - x)\mid_{0+}^{1}$  
  $\displaystyle =$ $\displaystyle \log{1} - 1 - \lim_{x \to 0+}(x\log{x} - x)$  
  $\displaystyle =$ $\displaystyle -1 - \lim_{x \to 0+}\frac{\log{x}}{\frac{1}{x}}$  
  $\displaystyle =$ $\displaystyle -1 - \lim_{x \to 0+}\frac{1/x}{-1/x^2} \ \ ($L'Hospital's rule$\displaystyle )$  
  $\displaystyle =$ $\displaystyle -1 - \lim_{x \to 0+}(-x) = -1$  

2.

(a) $f(x) = xe^{-x}$ is continuous on $[0,\infty)$. Then

$\displaystyle \int_{0}^{\infty}xe^{-x}\ dx = \int_{0}^{\infty-}xe^{-x}\ dx$

Using the integration by parts, we have

$\displaystyle \int{udv} = uv - \int{vdu}$

$\displaystyle \left(\begin{array}{ll}
u = x & dv = e^{-x}\\
du = dx & v = -e^{-x}
\end{array}\right)$

Thus,
$\displaystyle \int_{0}^{\infty-}xe^{-x}\ dx$ $\displaystyle =$ $\displaystyle -xe^{-x}\mid_{0}^{\infty-} + \int_{0}^{\infty-}e^{-x}\ dx$  
  $\displaystyle =$ $\displaystyle \lim_{x \to \infty-}(-xe^{-x} - e^{-x})\mid_{0}^{\infty-}$  
  $\displaystyle =$ $\displaystyle \lim_{x \to \infty-}(\frac{-x}{e^{x}})$  
  $\displaystyle =$ $\displaystyle \lim_{x \to \infty}\frac{-1}{e^{x}} = 0 \ ($L'Hospital's rule$\displaystyle )$  

(b) $f(x) = \frac{1}{x(\log{x})^{\alpha}}$ is continuous on $[2, \infty)$.

$\displaystyle \int_{2}^{\infty}\frac{1}{x(\log{x})^{\alpha}}\ dx = \int_{2}^{\infty-}\frac{1}{x(\log{x})^{\alpha}}\ dx$

Let $t = \log{x}$. Then $dt = \frac{1}{x}dx$.Note that

\begin{displaymath}\begin{array}{l\vert lll}
x&2&\rightarrow&\infty-\\ \hline
t&log{2}&\rightarrow&\infty-
\end{array}\end{displaymath}

Then


$\displaystyle \int_{2}^{\infty-}\frac{1}{x(\log{x})^{\alpha}}\ dx$ $\displaystyle =$ $\displaystyle \int_{\log{2}}^{\infty-}\frac{1}{t^{-\alpha}}dt$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{t^{-\alpha + 1}}{1 - \alpha} \mid_...
...\\
\log{\vert t\vert}\mid_{\log{2}}^{\infty-}, & \alpha = 1
\end{array}\right.$  

Note that

$\displaystyle \lim_{x \to \infty-}{\frac{t^{-\alpha + 1}}{1 - \alpha}} = \left\{\begin{array}{ll}
0, & \alpha > 1\\
\infty, & \alpha < 1
\end{array}\right.$

Then we have

$\displaystyle \int_{2}^{\infty-}\frac{1}{x(\log{x})^{\alpha}}\ dx = \left\{\begin{array}{ll}
0, & \alpha > 1\\
\infty, & \alpha \leq 1
\end{array}\right.$

(c) $f(x) = \frac{1}{x^{\alpha}\log{x}}$ is continuous on $[2, \infty)$. Then

$\displaystyle \int_{2}^{\infty}\frac{1}{x^{\alpha}\log{x}}\ dx = \int_{2}^{\infty-}\frac{1}{x^{\alpha}\log{x}}\ dx$

Now

$\displaystyle x^{\alpha}f(x) = \frac{1}{\log{x}} \leq \frac{1}{\log{2}}$

implies that

$\displaystyle \int_{2}^{\infty-}f(x)\ dx \leq \frac{1}{\log{2}}\int_{2}^{\infty-}\frac{1}{x^{\alpha}}\ dx$

Note that $\int_{2}^{\infty-}\frac{1}{x^{\alpha}}\ dx$ converges at $\alpha > 1$. For $\alpha = 1$,we let $t = \log{x}$. Then $dt = \frac{1}{x}dx$.Note that

\begin{displaymath}\begin{array}{l\vert lll}
x&2&\rightarrow&\infty-\\ \hline
t&log{2}&\rightarrow&\infty-
\end{array}\end{displaymath}


$\displaystyle \int_{2}^{\infty}\frac{1}{x\log{x}}\ dx$ $\displaystyle =$ $\displaystyle \int_{\log{2}}^{\infty-}\frac{dt}{t}$  
  $\displaystyle =$ $\displaystyle \log\vert t\vert\mid_{\log{2}}^{\infty-} = \infty$  

For $\alpha < 1$ and $2 < x < \infty$, $\frac{1}{x^{\alpha}} > \frac{1}{x}$ implies that

$\displaystyle \int_{2}^{\infty}\frac{1}{x^{\alpha}\log{x}}\ dx > \int_{2}^{\infty}\frac{1}{x\log{x}}\ dx $

Therefore, $\int_{2}^{\infty}\frac{1}{x^{\alpha}\log{x}}\ dx$ diverges.

3.

(a)

$\displaystyle \cos{x} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + $

implies that.

$\displaystyle \cos{x} \leq 1 - \frac{x^{2}}{2} $

Thus,

$\displaystyle \frac{1}{\sqrt{\cos{x}}} < \frac{1}{\sqrt{1 - \frac{x^2}{2}}}$

Now if we can show

$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1 - \frac{x^2}{2}}}\ dx < \infty$

then the integral converges.
$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{1 - \frac{x^2}{2}}}\ dx$ $\displaystyle =$ $\displaystyle \sqrt{2}\int_{0}^{\frac{\pi}{2}}\frac{1}{\sqrt{2 - x^2}}\ dx$  
  $\displaystyle =$ $\displaystyle \sqrt{2}\sin{(\frac{x}{2})}\mid_{0}^{\frac{\pi}{2}} = \sqrt{2}\sin^{-1}{(\frac{\pi}{2\sqrt{2}})} < \infty$  

(b) $f(x)$ is continuous on $(0,1]$.Let $t = \sqrt{x}$. Then $t^2 = x$ and $2t dt = dx$.Note that

\begin{displaymath}\begin{array}{l\vert lll}
x&0+&\rightarrow&1\\ \hline
t&0+&\rightarrow&1
\end{array}\end{displaymath}

Then


$\displaystyle \int_{0+}^{1}\frac{\log{x}}{\sqrt{x}}\ dx$ $\displaystyle =$ $\displaystyle \int_{0+}^{1}\frac{\log{t^2}}{t}(2tdt) = 4\int_{0+}^{1}\log{t}\ dt$  
  $\displaystyle =$ $\displaystyle 4[t\log{t} - t\mid_{0+}^{1} = 4[\log{1} - 1 - \lim_{t \to 0+}(t\log{t} - t)]$  
  $\displaystyle =$ $\displaystyle 4[-1 - \lim_{t \to 0+}(\frac{\log{t} -1}{\frac{1}{t}})]$  
$\displaystyle 4[-1 - \lim_{t \to 0+}\frac{1/t}{-1/t^2} ] = -4$