Extension of definite integrals

Exercise

1.
Evaluate the following improper integralsD
(a)
$\displaystyle{\int_{0}^{1}\frac{dx}{\sqrt{1-x}}}$
(b)
$\displaystyle{\int_{0}^{1}\frac{dx}{x}}$
(c)
$\displaystyle{\int_{0}^{1}\log{x}dx}$
2.
Evaluate the following improper integralsD
(a)
$\displaystyle{\int_{0}^{\infty}xe^{-x}dx}$
(b)
$\displaystyle{\int_{2}^{\infty}\frac{1}{x(\log{x})^{\alpha}}dx}$
(c)
$\displaystyle{\int_{2}^{\infty}\frac{1}{x^{\alpha} \log{x}} dx}$
3.
Evaluate the convergence or divergence of the following integralsD
(a)
$\displaystyle{\int_{0}^{\frac{\pi}{2}}\frac{dx}{\sqrt{\cos{x}}}}$
(b)
$\displaystyle{\int_{0}^{1}\frac{\log{x}}{\sqrt{x}}}$