3.8 Answer

3.8

1.

(a) Let $t = \cos{x}$. Then $dt = -\sin{x}dx$DNote that

\begin{displaymath}\begin{array}{llll}
x&0 &\Rightarrow & \frac{\pi}{2}\\ \hline
t&1 &\Rightarrow & 0
\end{array}\end{displaymath}

Then


$\displaystyle \int_{0}^{\frac{\pi}{2}}{\cos^{4}{x}\sin{x}}\ dx$ $\displaystyle =$ $\displaystyle \int_{1}^{0}{t^{4}(-dt)}$  
  $\displaystyle =$ $\displaystyle \int_{0}^{1}t^{4}\ dt = \frac{t^{5}}{5}\mid_{0}^{1} = \frac{1}{5}$  

(b) Let $t = \sqrt{1 + \cos{x}}$. Then $t^2 = 1 + \cos{x}$ and $2tdt = -\sin{x}dx$DNote that

\begin{displaymath}\begin{array}{llll}
x&0 &\Rightarrow & \frac{\pi}{2}\\ \hline
t&\sqrt{2} &\Rightarrow & 1
\end{array}\end{displaymath}

Then
$\displaystyle \int_{0}^{\frac{\pi}{2}}{\frac{\sin{x}}{\sqrt{1 + \cos{x}}}}\ dx$ $\displaystyle =$ $\displaystyle \int_{\sqrt{2}}^{1}{\frac{-2tdt}{t}}$  
  $\displaystyle =$ $\displaystyle -2\int_{0}^{\frac{\pi}{2}}\ dt = -2t\mid_{\sqrt{2}}^{1} = -2(1 - \sqrt{2}) = 2(\sqrt{2} - 1)$  

(c)

$\displaystyle \int_{0}^{\frac{\pi}{2}}{\sin^{4}{x}}\ dx$ $\displaystyle =$ $\displaystyle \frac{3!!}{4!!}\frac{\pi}{2} = \frac{3\pi}{16}$  

(d)

$\displaystyle \int{f(x)g'(x)}\ dx = f(x)g(x) - \int{g(x)f'(x)}\ dx$

Then

\begin{displaymath}\begin{array}{ll}
f(x) = x^2 & g'(x) = \cos{x}\\
f'(x) = 2x & g(x) = \sin{x}
\end{array}\end{displaymath}


$\displaystyle \int_{-1}^{1}{x^{2}\cos{x}}\ dx$ $\displaystyle =$ $\displaystyle x^{2}\sin{x}\mid_{-1}^{1} - \int{2x\sin{x}}\ dx$  
  $\displaystyle =$ $\displaystyle \sin{1} - \sin{(-1)} - \int{2x\sin{x}}\ dx = 2\sin{1} - \int{2x\sin{x}}\ dx$  

Use the integration by parts again.

\begin{displaymath}\begin{array}{ll}
f(x) = 2x & g'(x) = \sin{x}\\
f'(x) = 2 & g(x) = -\cos{x}
\end{array}\end{displaymath}

implies that
$\displaystyle \int{2x\sin{x}}\ dx$ $\displaystyle =$ $\displaystyle -2x\cos{x}\mid_{-1}^{1} + 2\int{\cos{x}}\ dx$  
  $\displaystyle =$ $\displaystyle -2\cos{1} - 2\cos{(-1)} + 2\sin{x}\mid_{-1}^{1}$  
  $\displaystyle =$ $\displaystyle -2\cos{1} - 2\cos{1} + 2\sin{1} - 2\sin{(-1)} = -4\cos{1} + 4\sin{1}$  

ThereforeC
$\displaystyle \int_{-1}^{1}{x^{2}\cos{x}}\ dx$ $\displaystyle =$ $\displaystyle 2\sin{1} -[-4\cos{1} + 4\sin{1}]$  
  $\displaystyle =$ $\displaystyle 4\cos{1} - 2\sin{1}$  

(e) For $n > 0$,

$\displaystyle \int_{0}^{\pi}\cos{nx}\ dx$ $\displaystyle =$ $\displaystyle \frac{1}{n}\sin{nx}\mid_{0}^{\pi} = 0$  

2. $\displaystyle{I_{n} = \int_{0}^{\frac{\pi}{2}}\sin^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x} \sin{x}dx = \frac{n-1}{n} I_{n-2}}$

$\displaystyle{J_{n} = \int_{0}^{\frac{\pi}{2}}\cos^{n}{x}dx = \int_{0}^{\frac{\pi}{2}}\cos^{n-1}{x} \cos{x}dx = \frac{n-1}{n} J_{n-2}}$