Definite integral

Exercise

1.
For $f(t)$ is continuous, find $g(x)$
(a)
$\displaystyle{g(x) = \frac{d}{dx}\int_{x}^{b}f(t)dt}$
(b)
$\displaystyle{g(x) = \frac{d}{dx}\int_{x}^{x+1}f(t)dt}$
(c)
$\displaystyle{g(x) = \frac{d}{dx}\int_{0}^{2x}x^{2}f(t)dt}$
2.
Evaluate the following definite integral.
(a)
$\displaystyle{\int_{1}^{5}2\sqrt{x-1}dx}$
(b)
$\displaystyle{\int_{1}^{2}\frac{2-t}{t^{3}}dt}$
(c)
$\displaystyle{\int_{0}^{\frac{\pi}{2}}\cos{x}dx}$
(d)
$\displaystyle{\int_{0}^{1}xe^{-x^{2}}dx}$
(e)
$\displaystyle{\int_{0}^{\log{2}} \frac{e^{x}}{e^{x} + 1}dx}$

4.
Prove the following inequality.
(a)
$\displaystyle{\frac{\pi}{4} < \int_{0}^{1}\frac{1}{1 + x^n}dx < 1 \ \ (n > 2)}$
(b)
$\displaystyle{\frac{1}{2n+2} \leq \int_{0}^{1} \frac{x^n}{1 + x}dx \leq \frac{1}{n} \ \ (n \geq 1)}$
5.
Find the following limit..
(a)
$\displaystyle{\lim_{n \rightarrow \infty} \left(\frac{1}{n+1} + \frac{1}{n + 2} + \cdots + \frac{1}{2n} \right)}$
(b)
$\displaystyle{\lim_{n \rightarrow \infty} \sum_{i = 1}^{n} \sqrt{\frac{1}{n^2 + i^2}}}$
(c)
$\displaystyle{\lim_{x \rightarrow 0} \int_{0}^{x} \tan{(t^2)}dt}$