Integration by substitution

Exercise

1.
Find the following integralD
(a)
$\displaystyle{\int{e^{2-x}}\ dx}$
(b)
$\displaystyle{\int{\sec^2{(1-x)}}\ dx}$
(c)
$\displaystyle{\int{\frac{x}{\sqrt{1-x^2}}}\ dx}$
(d)
$\displaystyle{\int{\frac{\sin{x}}{\cos^2{x}}}\ dx}$
(e)
$\displaystyle{\int{\frac{e^{1/x}}{x^2}} \ dx}$
(f)
$\displaystyle{\int{\frac{\sec^2{\theta}}{\sqrt{3\tan{\theta} + 1}}}\ d\theta}$
(g)
$\displaystyle{\int{\frac{1+\cos{2x}}{\sin^2{x}}} \ dx}$
(h)
$\displaystyle{\int{\frac{\log{x}}{x}}\ dx }$
(i)
$\displaystyle{\int{\frac{e^x}{1 + e^{2x}}} \ dx}$
(j)
$\displaystyle{\int{x\sin{(x^2)}} \ dx}$