Properties of functions

Exercise

1.
Show that $f(x) = x - \tan{x}$ is strictly monotonically decreasing function on $\displaystyle{(-\frac{\pi}{2}, \frac{\pi}{2})}$
2.
Prove the following inequality.
(a)
For $x > 0$ $\displaystyle{\frac{x}{1+x} < \log{(1+x)}}$
(b)
For $x > 0$ $\displaystyle{\frac{x}{1+x^{2}} < \tan^{-1}{x} < x}$
(c)
$\displaystyle{e^{\pi} > \pi^{e}}$
3.
Find the local extremum and concavity of the following function.
(a)
$\displaystyle{f(x) = x^{3} - 6x^2 + 9x + 3}$
(b)
$\displaystyle{f(x) = x^{2}e^{-x}}$