2.4 Answer

2.4

1.

(a)

$\displaystyle{f'(x) = 3x^2 - 2x = \frac{f(1) - f(-1)}{1 - (-1)} = 1}$ ‚æ‚è

$\displaystyle 3x^2 - 2x - 1 = 0$

Then

$\displaystyle (3x + 1)(x - 1) = 0 $

$\displaystyle x = -\frac{1}{3}, 1 $

Now $x$ must be in the interval $(-1,1)$. Then

$\displaystyle x = -\frac{1}{3}$

(b)

$\displaystyle{f'(x) = \frac{1}{\sqrt{1 - x^2}} = \frac{f(1) - f(0)}{1} = \frac{\pi}{2}}$ implies

$\displaystyle \sqrt{1 - x^2} = \frac{2}{\pi}$

Square both sides. Then

$\displaystyle 1 - x^2 = (\frac{2}{\pi})^2 $

Solve this for $x$. We have

$\displaystyle x = \pm \sqrt{ 1 - (\frac{2}{\pi})^{2}} $

Now $x$ must be in the interval $(0,1)$. Then

$\displaystyle x = \sqrt{ 1 - (\frac{2}{\pi})^{2}} $

(c)

$\displaystyle{f'(x) = \frac{1}{x} = \frac{f(e) - f(1)}{e - 1} = \frac{1}{e - 1}}$ implies that

$\displaystyle x = e - 1$

Now $x$ is in $(1,e)$. Then

$\displaystyle x = e - 1$