Higher-order derivatives

Exercise

1.
Show that the following formulaD
(a)
$\displaystyle{(\sin{x})^{(n)} = \sin{(x + \frac{n \pi}{2})}}$
(b)
$\displaystyle{(\cos{x})^{(n)} = \cos{(x + \frac{n \pi}{2})}}$
(c)
$\displaystyle{\left[(1 + x)^{\alpha}\right]^{(n)} = \alpha(\alpha -1)\cdots(\alpha - n + 1)(1+x)^{\alpha - n}}$
2.
Find the $n$th derivative of the following functionD
(a)
$\displaystyle{f(x) = \frac{x^{3}}{1 - x}}$
(b)
$\displaystyle{f(x) = x^{2} \sin{x}}$
(c)
$\displaystyle{f(x) = e^{x} \sin{x}}$