Sequences

Exercise

1.
Find the limit of the following sequences:
(a)
$\displaystyle{\{a_{n}\} = \{n^4 - 3n^3\}}$
(b)
$\displaystyle{\{a_{n}\} = \{\frac{3n^{2}+5}{4n^{3} - 1}\}}$
(c)
$\displaystyle{\{a_{n}\} = \{\frac{1 - n}{n - \sqrt{n}}\}}$
(d)
$\displaystyle{\{a_{n}\} = \{\frac{n(n+2)}{n+1} - \frac{n^{3}}{n^{2}+1}\}}$
(e)
$\displaystyle{\{a_{n}\} = \{\sqrt{n+1} - \sqrt{n}\}}$
2.
Show that for $a > 0$, $\displaystyle{\lim_{n \rightarrow \infty}\sqrt[n]{a} = 1}$ D
3.
Find the limit of the following functions using $\displaystyle{\lim_{n \rightarrow \infty}\sqrt[n]{a} = 1}$.
(a)
For $a > b > 0$C $\displaystyle{\lim_{n \rightarrow \infty} (a^n + b^n)^{\frac{1}{n}}}$
(b)
$\displaystyle{\{a_{n}\} = \{(1+2^{n}+3^{n})^{\frac{1}{n}}\}}$