Continuous functions

Exercise

1.
Find the following function $f(x)$ is continuous at $x = 2$.

$\displaystyle f(x) = \left\{\begin{array}{cl}
\frac{x^2 - x - 2}{x - 2}, & x \neq 2\\
3, & x = 2
\end{array} \right.$

2.
Show that $f(x) = \sqrt{x}$ is continuous on $[0,\infty)$D
3.
Find the max and min of the following functions:
(a)
$\displaystyle{f(x) = x^2 - 3x + 1, \ x \in [-2,1]}$
(b)
$\displaystyle{f(x) = \frac{1}{x}, \ x \in (0,1]}$
(c)
$\displaystyle{f(x) = x^2 - ax, \ x \in [0,2]}$
4.
Prove that $\displaystyle{2\sin{x} - x = 0}$ has the real solution in $\displaystyle{(\frac{\pi}{2},\pi)}$.