Jordan Cannonical Form

$\spadesuit$Jordan block $\spadesuit$

The $k$th square matrix is said to be Jordan block for the complex number $\alpha$.

$\displaystyle J(\alpha,k) = \left(\begin{array}{ccccc}
\alpha & 1 & & 0& \\
...
...dots & \ddots & \\
& & & \alpha & 1\\
& 0 & & & \alpha
\end{array}\right) $

Example 5..1  

Represent the following Jordan block. $J(5,1), J(6,2), J(5,3)$

Answer

$\displaystyle j(5,1) = (5), J(6,2) = \left(\begin{array}{cc}
6 & 1\\
0 & 6
...
...5,3) = \left(\begin{array}{ccc}
5&1&0\\
0&5&1\\
0&0&5
\end{array}\right) $

Matrix obtained by arranging several Jordan blocks diagonally

$\displaystyle J = \left(\begin{array}{cccc}
J(\alpha_{1},k_{1}) & & &\\
& J(...
...2},k_{2}) & & \\
& & \ddots &\\
&0&&J(\alpha_{i},k_{i})
\end{array}\right)$

is called Jordan form.

$\spadesuit$Standard form of nilpotent matrix $\spadesuit$

Can any $n$ square matrix $A$ take the appropriate regular matrix $P$ and make $P^{-1}AP$ a Jordan matrix?. First, consider the case where $$ is a nilpotent matrix. Let $N$ be a nilpotnet matrix. Then by the definition of the nilpotent matrix, there exists an integer $k$ which satisfies $N^{k-1} \neq 0, N^{k} = 0$. Now let

$\displaystyle W_{j} = W_{j}(0) = \{{\mathbf x} \in {\mathcal C}^{n} : N^{j}{\mathbf x} = {\bf0}\} $

Then consider the sequaence of subspaces

$\displaystyle V(0) = W_{1} \subset W_{2} \subset \cdots \subset W_{k} = {\mathcal C}^{n} $

Now let
$\displaystyle g_{i}$ $\displaystyle =$ $\displaystyle \dim W_{i}   (1 \leq i \leq k)$  
$\displaystyle h_{k}$ $\displaystyle =$ $\displaystyle g_{k} - g_{k-1}, h_{k} + h_{k+1} = g_{k-1} - g_{k-2}$  
$\displaystyle h_{k}$ $\displaystyle +$ $\displaystyle h_{k-1} + h_{k-2} = g_{k-2} - g_{k-3}, \ldots,$  

and let ${\mathbf x}_{1}, \ldots ,{\mathbf x}_{h_{k}}$ be the linearly independent vectors in $W_{k}$ satisfies

$\displaystyle <{\mathbf x}_{1}, \ldots , {\mathbf x}_{h_{k}}> \bigcap W_{k-1} = {\bf0} $

Then the following $kh_{k}$ vectors

$\displaystyle \left\{\begin{array}{l}
{\mathbf x}_{1}, N{\mathbf x}_{1},\ldots,...
...{\mathbf x}_{h_{k}},\ldots,N^{k-1}{\mathbf x}_{h_{k}}
\end{array}\right.   * $

are linearly independent. Because letting the linear combination of these vectors be equal to 0, then

$\displaystyle \sum_{i=1}^{h_{k}}c_{i}^{0}{\mathbf x}_{i} + \sum_{i=1}^{h_{k}}c_...
..._{i} + \cdots + \sum_{i=1}^{h_{k}}c_{i}^{h_{k}}N^{k-1}{\mathbf x}_{i} = {\bf0} $

Now multiply $N^{[k-1]}$ to both sides of this equation from the left. Then the sum of terms after the 2nd term is 0 and we have

$\displaystyle \sum_{i=1}^{h_{k}}c_{i}^{0}N^{k-1}{\mathbf x}_{i} = N^{k-1}\left(\sum_{i=1}^{h_{k}}c_{i}^{0}{\mathbf x}_{i}\right) = {\bf0} $

Thus, $\sum_{i=1}^{h_{k}}c_{i}^{0}{\mathbf x}_{i} \in W_{k-1}$. But by the assumption

$\displaystyle <{\mathbf x}_{1}, \ldots , {\mathbf x}_{h_{k}}> \bigcap W_{k-1} = {\bf0} $

it has to be $c_{1}^{0} = \cdots = c_{h_{k}}^{0} = 0$. Similarly, repeating this process, we have $c_{i}^{j} = 0 (i = 1,\ldots,h_{k}, j = 0 , \ldots, k-1)$.

Next we conside the vectors ${\mathbf y}_{1},\ldots,{\mathbf y}_{h_{k-1}}$ satisfying the following conditions. \begin{displaymath}\begin{array}{ll}
(1) & {\mathbf y}_{1},\ldots,{\mathbf y}_{h...
...\mathbf y}_{h_{k-1}}> \bigcap W_{k-2} = \{{\bf0}\}
\end{array}\end{displaymath}

At this time, the combination of the following $h_{k-1}$ vectors and the (*) vector is also linearly independent.

$\displaystyle \left\{\begin{array}{l}
{\mathbf y}_{1}, N{\mathbf y}_{1},\ldots,...
...hbf y}_{h_{k-1}},\ldots,N^{k-1}{\mathbf y}_{h_{k-1}}
\end{array}\right.   ** $

Similarly, we conside the vectors ${\mathbf z}_{1},\ldots,{\mathbf z}_{h_{k-2}}$.

\begin{displaymath}\begin{array}{ll}
(1) & {\mathbf z}_{1},\ldots,{\mathbf z}_{h...
...\mathbf z}_{h_{k-2}}> \bigcap W_{k-3} = \{{\bf0}\}
\end{array}\end{displaymath}

You can repeat this discussion below, and finally the whole vector below will be the basis of ${\mathcal C}^{n}$.

$\displaystyle W_{k} \! \left\{\begin{array}{ll}
&      {\mathbf x}_{1}, \l...
...}_{1},..,N^{k-3}{\mathbf z}_{h_{k-2}},..
\end{array}\right.
\end{array}\right. $

and each subspace is $N$-invariant.

\begin{displaymath}\begin{array}{l}
<N^{k-1}{\mathbf x}_{1},N^{k-2}{\mathbf x}_{...
...{h_{k-2}},\ldots,{\mathbf z}_{h_{k-2}}>,\\
\cdots
\end{array} \end{displaymath}

Now we multiply $N$ to the $(n,k)$ matrix $(N^{k-1}{\mathbf x}_{1}, N^{k-2}{\mathbf x}_{1} ,\ldots,{\mathbf x}_{1})$ from the left. Then

$\displaystyle N(N^{k-1}{\mathbf x}_{1}, N^{k-2}{\mathbf x}_{1} ,\ldots,{\mathbf...
... (N^{k-1}{\mathbf x}_{1}, N^{k-2}{\mathbf x}_{1} ,\ldots,{\mathbf x}_{1})J(0,k)$

Similarly for other subspace, we let
$\displaystyle P$ $\displaystyle =$ $\displaystyle (N^{k-1}{\mathbf x}_{1}  N^{k-2}{\mathbf x}_{1}  \cdots  {\mat...
...{\mathbf x}_{h_{k}}  N^{k-2}{\mathbf x}_{h_{k}}  \cdots  {\mathbf x}_{h_{k}}$  
    $\displaystyle N^{k-2}{\mathbf y}_{1}  N^{k-3}{\mathbf y}_{1}  \cdots  {\math...
...{k-1}}  N^{k-3}{\mathbf y}_{h_{k-1}}  \cdots  {\mathbf y}_{h_{k-1}} \cdots )$  

Then $P$ is a regular matrix and we have

$\displaystyle P^{-1}NP = \left(\begin{array}{cccc}
J(0,k_{1}) & & 0 & \\
& J(0,k_{2}) & &\\
& 0 &\ddots &\\
&&& J(0,k_{l})
\end{array}\right) $

The Jordan matrix created in this way is called ordan canonical form of $N$. Summarizing the above, we get the following theorem

Theorem 5..3  

Let $N$ be $n$th square matrix. Then by the appropriate regular matrix $P$, we have

$\displaystyle P^{-1}NP = \left(\begin{array}{cccc}
J(0,k_{1}) & & 0 & \\
& J(0,k_{2}) & &\\
& 0 &\ddots &\\
&&& J(0,k_{l})
\end{array}\right) $

Note that $n = k_{1} + k_{2} + \cdots + k_{l}$.

Example 5..2  

Find the Jordan canonical form of the following nilpotent matrix.

$\displaystyle N = \left(\begin{array}{ccc}
0&1&-1\\
0&0&0\\
0&0&0
\end{array}\right) $

Answer Since $N$ satisfies $N^{2} = 0$, it is a nilpotent matrix of order 2. Thus, the eigenvalue of $N$ is 0. Now consider general eigen space $W_{j}$ for the eigenvalue 0.

$\displaystyle W_{j} = \{{\mathbf x} : N^{j}{\mathbf x} = {\bf0} \}$

implies $W_{1} \subset W_{2} = {\mathcal R}^{3}$.

$\displaystyle W_{1} = \{\left(\begin{array}{c}
x\\
y\\
z
\end{array}\right) : y - z = 0\}$

implies $\dim W_{1} = 2$. So, we let ${\mathbf x} = \left(\begin{array}{c}
0\\
1\\
0
\end{array}\right)$ Then ${\mathbf x} \in W_{2}$, and

$\displaystyle N{\mathbf x} = \left(\begin{array}{c}
1\\
0\\
0
\end{array}\right) \in W_{1}$

Since the dimension of $W_{1}$ is 2, there is a vector ${\mathbf y} = \left(\begin{array}{c}
0\\
1\\
1
\end{array}\right) \in W_{1}$ which is linearly independent from $N{\mathbf x}$ Note that $\{{\mathbf x}, N{\mathbf x}, {\mathbf y}\}$ is the basis of ${\mathcal R}^{3}$. Let

$\displaystyle P = (N{\mathbf x},{\mathbf x}, {\mathbf y}) = \left(\begin{array}{ccc}
1&0&0\\
0&1&1\\
0&0&1
\end{array}\right)$

Then

$\displaystyle P^{-1}NP = \left(\begin{array}{ccc}
0&1&0\\
0&0&0\\
0&0&0
\...
...right) = \left(\begin{array}{cc}
J(0,2) & 0\\
0 & J(0,1)
\end{array}\right)$

.

$\spadesuit$Jordan canonical form $\spadesuit$

Theorem 5..4  

Let $A$ be a $n$th square matrix and its characteristic polynomial be

$\displaystyle \Phi_{A}(t) = (t - \lambda_{1})^{n_{1}}(t - \lambda_{2})^{n_{2}} \cdots (t - \lambda_{r})^{n_{r}}$

and

$\displaystyle \lambda_{i} \neq \lambda_{j}  (i \neq j),  n = n_{1}+n_{2}+\cdots+n_{r} $

The by the appropriate regular matrix $P$, we have

$\displaystyle P^{-1}AP = \left(\begin{array}{cccc}
J(\lambda_{1},k_{1}) & & 0 ...
...,k_{2}) & &\\
& 0 &\ddots &\\
&&& J(\lambda_{r},k_{l})
\end{array}\right) $

Note that $n = k_{1} + k_{2} + \cdots + k_{l}$.

Proof For the generalized eigenspace $W(\lambda_{i})$ of the eigenvalues $\lambda_{i}$, consider the sequence of subspaces

$\displaystyle W_{1}(\lambda_{1}) \subset W_{2}(\lambda_{2}) \subset \cdots \subset W_{k}(\lambda_{i}) = W_{k+1}(\lambda_{i+1}) + \cdots$ (5.2)

Note that
$\displaystyle W_{j}(\lambda_{i})$ $\displaystyle =$ $\displaystyle \{{\mathbf x} \in {\mathcal C}^{n} : (A - \lambda_{i}I)^{j} {\mathbf x} = {\bf0}\}$  
$\displaystyle W(\lambda_{i})$ $\displaystyle =$ $\displaystyle W_{k}(\lambda_{i})$  

Then $W(\lambda_{i})$ is $A$-invariant and $(A - \lambda_{i}I)$-invariant subspace of ${\mathcal C}^{n}$. Thus, we can apply the argument of the theorem 5.2 to $A - \lambda_{i}I$ and the sequence (5.2). Now the basis of $W(\lambda_{i})$ is

$\displaystyle \{{\bf p}_{1}^{i},{\bf p}_{2}^{i},\ldots,{\bf p}_{n_{i}}^{i}\}$

and the $(n,n_{i})$ matrix obtained by arrangement.

$\displaystyle P_{i} = ({\bf p}_{1}  {\bf p}_{2}^{i}  \cdots  {\bf p}_{n_{i}}^{i}) $

and

$\displaystyle (A - \lambda_{i}I)P_{i} = P_{i}\left(\begin{array}{cccc}
J(0,k_{...
...}^{i}) & 0&\\
& 0 & \ddots &\\
& & & J(0,k_{l_{i}}^{i})
\end{array}\right)$

Note that we can choose $n_{i} = k_{1}^{i} + k_{2}^{i} + \cdots + k_{l_{i}}^{i}$. Now transpose $\lambda_{i}IP_{i} = \lambda_{i}P_{i}$ to the right hand, we have
$\displaystyle AP_{i}$ $\displaystyle =$ $\displaystyle \lambda_{i}P_{i} + P_{i}\left(\begin{array}{cccc}
J(0,k_{1}^{i}) ...
..._{2}^{i}) & 0&\\
& 0 & \ddots &\\
& & & J(0,k_{l_{i}}^{i})
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle P-{i}\left(\begin{array}{cccc}
J(\lambda_{i},k_{1}^{i}) &&&\\
& ...
...& 0&\\
& 0 & \ddots &\\
& & & J(\lambda_{i},k_{l_{i}}^{i})
\end{array}\right)$  

Furthermore, let

$\displaystyle P = ({\bf p}_{1}^{1} \cdots {\bf p}_{n_{1}}^{1} {\bf p}_{1}^{2} \cdots {\bf p}_{n_{2}}^{2} \cdots {\bf p}_{1}^{r} \cdots {\bf p}_{n_{r}}^{r} $

Then $P$ is a regular matrix and satisfies

$\displaystyle AP = P\left(\begin{array}{cccc}
J(\lambda_{1},k_{1}^{1}) &&&\\
...
...\\
& 0 & \ddots &\\
& & & J(\lambda_{r},k_{l_{r}}^{r})
\end{array}\right) $

Now multiply $P^{-1}$ from the left. Then we can obtain the required Jordan matrix $J = P^{-1}AP$. $ \blacksquare$

Example 5..3  

Find the Jordan canonical form of the following matrix, and also the transition matrix $P$.

$\displaystyle (1)  \left(\begin{array}{ccc}
1&1&-1\\
0&1&0\\
0&0&1
\end{...
... \left(\begin{array}{ccc}
4&-3&3\\
-1&3&-2\\
-3&4&-3
\end{array}\right) $

Answer (1) Find the eigenvalues of $A = \left(\begin{array}{ccc}
1&1&-1\\
0&1&0\\
0&0&1
\end{array}\right)$.

$\displaystyle \Phi_{A}(\lambda) = A - \lambda I){\mathbf x} = (1 - \lambda)^{3} = 0$

implies the eigenvalue of $A$ is 1 only. Then, $(A - I)$ is a nilpotent matrix and by the example 5.2, if we let

$\displaystyle P = \left(\begin{array}{ccc}
1&0&0\\
0&1&1\\
0&0&1
\end{array}\right) $

Then

$\displaystyle P^{-1}AP = \left(\begin{array}{ccc}
1&1&0\\
0&1&0\\
0&0&1
\...
...ight) = \left(\begin{array}{cc}
J(1,2) & 0\\
0 & J(1,1)
\end{array}\right) $

(2) We find the eigenvalues of $A = \left(\begin{array}{ccc}
4&-3&3\\
-1&3&-2\\
-3&4&-3
\end{array}\right)$.

$\displaystyle \Phi_{A}(\lambda) = A - \lambda I){\mathbf x} = (1 - \lambda)^{2}(2-\lambda) = 0$

implies the eigenvalues of $A$ are 1 and 2. For the eigenvalue 1,

$\displaystyle (A - 1I) = \left(\begin{array}{ccc}
3&-3&3\\
-1&2&-2\\
-3&4&...
... = \left(\begin{array}{ccc}
3&-3&3\\
-1&-1&1\\
-1&1&-1
\end{array}\right)$

Thus,

$\displaystyle W_{1}(1) \subset W_{2}(1) = W(2) $

$\displaystyle \dim W_{1}(1) = 1, \dim W_{2}(1) = 2$

So,

$\displaystyle W_{1}(1) = \{{\mathbf x} : (A - I){\mathbf x} = {\bf0} $

implies ,

$\displaystyle W_{1}(1) = <\left(\begin{array}{c}
0\\
1\\
1
\end{array}\right)> $

$\displaystyle W_{2}(1) = \{{\mathbf x} : (A - I)^{2}{\mathbf x} = {\bf0} $

implies

$\displaystyle W_{2}(1) = < {\mathbf x}, (A - I){\mathbf x}> = <\left(\begin{arr...
...end{array}\right) , \left(\begin{array}{c}
1\\
1\\
0
\end{array}\right)> $

Next we find the eigenspace for the eigenvalue 2. Find

$\displaystyle W_{1}(2) = (A - 2I){\mathbf x} = {\bf0} $

Then

$\displaystyle W_{1}(2) = W(2) = <\left(\begin{array}{c}
3\\
1\\
-1
\end{array}\right)> $

Now take ${\mathbf y} = \left(\begin{array}{c}
3\\
1\\
-1
\end{array}\right)$. Let

$\displaystyle P = ({\mathbf x}  A{\mathbf x}  {\mathbf y}) = \left(\begin{array}{ccc}
0&1&3\\
1&1&1\\
1&0&-1
\end{array}\right) $

Then

$\displaystyle P^{-1}AP = \left(\begin{array}{ccc}
1&1&0\\
0&1&0\\
0&0&2
\end{array}\right) $

and this is Jordan canonical form of $A$.

Exercise5-2

1. Find the Jordan canonical from of the following nilpotent matrix and the transition matrix $P$. (a)

$\displaystyle \ \ \left(\begin{array}{ccc}
0&2&1\\
0&0&2\\
0&0&0
\end{array}\right) $

(a)

$\displaystyle \left(\begin{array}{ccc}
0&-2&0\\
0&0&0\\
3&1&0
\end{array}\right)$

2. Find the Jordan canonical form of the following matrix and the transition matrix $P$. (a)

$\displaystyle \ \ \left(\begin{array}{ccc}
5&2&2\\
-2&0&-3\\
-1&-1&2
\end{array}\right)$

(a)

$\displaystyle \left(\begin{array}{ccc}
1&0&4\\
2&-1&4\\
-1&-1&-5
\end{array}\right)$