meromorphic function

.

Exercise2.3
1. Find a complex number that satisfies the following equation.
(a)
$e^{z} = 1$
(b)
$e^{z} = i$
(c)
$e^{z} = -2$

2. Express the following value in the form of $u + iv$.

(a)
$\sin{2i}$
(b)
$\sin{\left(\frac{\pi}{2} + i\right)}$
(c)
$\cos{\left(\frac{\pi}{3} - i\right)}$
(d)
$\tan{\left(\frac{\pi}{6} + 2i\right)}$
(e)
$\sin(iy)$
(f)
$\cos(iy)$

3. Prove the following formulas.

(a)
$1 + \tan^{2}{z} = \frac{1}{\cos^{2}{z}}$
(b)
$\sin{(-z)} = -\sin{z}$
(c)
$\cos(-z) = \cos{z}$

4. Show that for $\sin{z}$.

(a)
$\sin{z}$ has a period $2\pi$

(5) Find the period of $\tan{z}$.