DeMoivre's theorem and Euler's formula

Exercise1.2
1. Prove De Moivre's theorem 2. Simplify the following complex numbers.
(a)
$\left(\frac{1 - i}{\sqrt{2}}\right)^{7}$
(b)
$(\sqrt{3} - i)^{6}$
(c)
$\frac{(1 + \sqrt{3}i)^{6}}{(-1 + i)^{10}}$

3. Solve the following equation.

(a)
$z^2 = i$
(b)
$z^3 = -1$
(c)
$z^4 = -1 + \sqrt{3}i$

4. Express the followings in the form of $x + iy$.

(a)
$e^{i\frac{3}{4}\pi}$
(b)
$e^{-i\frac{1}{6}\pi}$
(c)
$e^{2 + i\pi}$
(d)
$e^{2- i\frac{3}{2}\pi}$

5. Express the followings in the polar form $re^{i\theta}$.

(a)
$-2$
(b)
$i$
(c)
$1+i$
(d)
$\sqrt{3} - i$

(6) Show that $\vert z\vert = 1$ if and only if $z = e^{i\theta}$.