complex numbers and complex plane

Exercise1.1
1. Show points $-3,2i,4 + i,2-2i$ on the complex plane 2. Prove the following theorem.
(a)
$\bar{z_{1} + z_{2}} = \bar{z_{1}} + \bar{z_{2}}$
(b)
$\bar{z_{1}z_{2}} = \bar{z_{1}}\bar{z_{2}}$
(c)
$Re(z) = \frac{z + \bar{z}}{2}$

3. Prove the following inequality.

(a)
$Re{z} \leq \vert z\vert$
(b)
$\vert z_{1} + z_{2}\vert \leq \vert z_{1}\vert + \vert z_{2}\vert$
(c)
$\vert\vert z_{1}\vert - \vert z_{2}\vert\vert \leq \vert z_{1} - z_{2}\vert$

4. Express the following complex numbers in polar form.

(a)
$-1 + i$
(b)
$3 - \sqrt{3}i$
(c)
$-1$
(d)
$2i$

5. Draw a curve that satisfies the following equation.

(a)
$\arg z =$   constant
(b)
$\vert z\vert =$   constant
(c)
$\vert z - 1\vert = \vert z - i\vert$
(d)
$\vert z - 2i\vert = 3$
(e)
$\vert z + 3\vert = 3\vert z - 1\vert$
(f)
$z - \bar{z} = 2i$