微分方程式への応用(Application to differential equation)

ラプラス変換の応用としてここでは2階の定数係数常微分方程式の初期値問題

$\displaystyle a_{2}y^{\prime\prime} + a_{1}y^{\prime} + a_{0}y = f(t),$

$\displaystyle y(t_{0}) = A_{0},  y^{\prime}(t_{0}) = A_{1} $

を解いてみましょう.初期条件は$t-t_{0}$を新しい変数と考えれば,$t_{0} = 0$の場合に帰着できるので,初期条件は

$\displaystyle y(0) = B_{0},  y^{\prime}(0) = B_{1} $

としてよいことになります.ここで両辺にラプラス変換を施し,

$\displaystyle {\cal L}\{y(t)\} = Y(s), {\cal L}\{f(t)\} = F(s)$

とおくと,

$\displaystyle a_{2}[s^{2}Y(s) - sy(0) - y^{\prime}(0)] + a_{1}[sY(s) - y(0)] + a_{0}Y(s) = F(s). $

これを$Y(s)$について解くと

$\displaystyle Y(s) = \frac{F(s)}{a_{2}s^2 + a_{1}s + a_{0}} + \frac{a_{2}(sB_{0}+B_{1}) + a_{1}B_{0}}{a_{2}s^2 + a_{1}s + a_{0}}. $

最後に$Y(s)$のラプラス逆変換を求めれば,初期値問題の解が得られます.この手順を例題を用いて示します.

例題 5..24  

ラプラス変換を用いて次の初期値問題を解け.

$\displaystyle y^{\prime\prime} + 2y^{\prime} + 2y = \sin{t},  y(0) = 1,  y^{\prime}(0) = 1. $

両辺にラプラス変換を施すと

$\displaystyle s^{2}Y(s) - s - 1 + 2(sY(s) - 1) + 2Y(s) = \frac{1}{s^2 + 1}. $

これを$Y(s)$について解くと,

$\displaystyle Y(s) = \frac{1}{(s^2 + 1)(s^2 + 2s + 2)} + \frac{s+3}{s^2 + 2s + 2}. $

最初の項を部分分数分解すると

$\displaystyle \frac{1}{(s^2 + 1)(s^2 + 2s + 2)} = \frac{As + B}{s^2 + 1} + \frac{Cs +D}{s^2 + 2s +2}. $

ここで

$\displaystyle As+B\mid_{s=i} = \frac{1}{s^2 +2s +2}\mid_{s=i} = \frac{1}{1+2i} = \frac{1-2i}{5}. $

よって, $B = \frac{1}{5},  A = -\frac{2}{5}$. 同様にして$C,D$を求めると, $C = \frac{2}{5},  D = \frac{3}{5}$.これより,
$\displaystyle {\cal L}^{-1}\{\frac{1}{(s^2 + 1)(s^2 + 2s + 2)}\}$ $\displaystyle =$ $\displaystyle \frac{1}{5}{\cal L}^{-1}\{\frac{1-2s}{s^2 + 1}\} + \frac{1}{5}{\cal L}^{-1}\{\frac{2s+3}{s^2 + 2s +2} \}$  
  $\displaystyle =$ $\displaystyle \frac{1}{5}(\sin{t} - 2\cos{t}) + \frac{e^{-t}}{5}(2\cos{t} + \sin{t}) .$  

また

$\displaystyle {\cal L}^{-1}\{\frac{s+3}{s^2 + 2s +2}\} = {\cal L}^{-1}\{\frac{s+1+2}{(s+1)^2 + 1}\} = e^{-t}(\cos{t} + 2\sin{t}) .$

したがって,

$\displaystyle y(t) = \frac{e^{-t}}{5}(7\cos{t}+11\sin{t}) + \frac{1}{5}(\sin{t} - 2\cos{t}).
\ensuremath{ \blacksquare}
$

例題 5..25  

$RC$回路の起電圧を $e^{-t},  t \geq 0$とする.初期電流が$1/R$のとき,この回路に流れている電流を求めよ.(例題1.6参照)

Kirchhoffの電圧の法則より,

$\displaystyle Ri + \frac{1}{C}\int_{0}^{t}i(u)du = e^{-t},  i(0) = \frac{1}{R}. $

両辺にラプラス変換を施すと

$\displaystyle R{\cal L}\{i(t)\} + \frac{1}{C}{\cal L}\{\int_{0}^{t}i(u)du\} = {\cal L}\{e^{-t}\}. $

ここで ${\cal L}\{i(t)\} = I(s)$とおき,積分法則を用いると,

$\displaystyle RI(s) + \frac{1}{Cs}I(s) = \frac{1}{s+1}. $

これを$I(s)$について解くと,

$\displaystyle I(s) = \frac{Cs}{(RCs + 1)(s+1)} = \frac{A}{RCs + 1} + \frac{B}{s+1}. $

これより$A,B$を求めると,

$\displaystyle A = \frac{Cs}{s+1}\mid_{s = -\frac{1}{RC}} = -\frac{C}{RC-1}, $

$\displaystyle B = \frac{Cs}{RCs+1}\mid_{s = -1} = \frac{C}{RC-1}. $

よって

$\displaystyle I(s) = \frac{1}{RCs+1}\cdot\frac{-C}{RC-1} + \frac{1}{s+1}\cdot \frac{C}{RC-1}. $

これよりラプラス逆変換を用いて$i(t)$を求めると,

$\displaystyle i(t) = -\frac{C}{RC-1}\frac{1}{RC}e^{-t/RC} + \frac{C}{RC-1}e^{-t}.
\ensuremath{ \blacksquare}
$

例題 5..26  

次の初期値問題を解け.

$\displaystyle y_{1}^{\prime} + y_{1} + 3y_{2}^{\prime} = 1,  y_{1} + y_{2}^{\prime} + 2y_{2} = t ,$

$\displaystyle y_{1}(0) = 0,  y_{2}(0) = 0. $

与えられた方程式にラプラス変換を施し, ${\cal L}\{y_{1}(t)\} = Y_{1}(s), {\cal L}\{y_{2}(t)\} = Y_{2}(s)$とおくと

$\displaystyle sY_{1}(s) - y_{1}(0) + Y_{1}(s) + 3(sY_{2}(s) - y_{2}(0)) = \frac{1}{s}, $

$\displaystyle Y_{1}(s) + sY_{2}(s) - y_{2}(0) + 2Y_{2}(s) = \frac{1}{s^2}. $

よって

$\displaystyle (s+1)Y_{1}(s) + 3sY_{2}(s) = \frac{1}{s}, $

$\displaystyle Y_{1}(s) + (s + 2)Y_{2}(s) = \frac{1}{s^2}. $

ここでCramerの公式を用いて $Y_{1}(s),  Y_{2}(s)$を求めると,
$\displaystyle Y_{1}(s)$ $\displaystyle =$ $\displaystyle \frac{\left\vert \begin{array}{cc}
\frac{1}{s}&3s\\
\frac{1}{s^2...
...y}\right\vert} = \frac{s-1}{s(s^2 +2)} = \frac{-1/2}{s}+\frac{s/2 + 1}{s^2 +2},$  
$\displaystyle Y_{2}(s)$ $\displaystyle =$ $\displaystyle \frac{\left\vert \begin{array}{cc}
s+1&\frac{1}{s}\\
1&\frac{1}{...
...}\right\vert} = \frac{1}{s^2(s^2 +2)} = \frac{1/2}{s^2} - \frac{1/2 }{s^2 + 2}.$  

これよりラプラス逆変換を用いて $y_{1}(t),  y_{2}(t)$を求めると,

$\displaystyle y_{1}(t) = -\frac{1}{2} + \frac{\cos{\sqrt{2}{t}}}{2} + \frac{\sin{\sqrt{2}{t}}}{\sqrt{2}} $

$\displaystyle y_{2}(t) = \frac{t}{2} - \frac{\sin{\sqrt{2}t}}{2\sqrt{2}} $

となる. $ \blacksquare$



Subsections