演習問題3.3

1.
次の微分方程式を解け.
(a)
$\displaystyle{ \left\{\begin{array}{rl}
x_{1}^{\prime} =& 2x_{1} + x_{2} - e^{t}\\
x_{2}^{\prime} =& 3x_{1} + 4x_{2} - 7e^{t}
\end{array} \right . }$
(b)
$\displaystyle{ {\bf X}^{\prime} = \left(\begin{array}{cc}
0&4\\
-1&0
\end{array}\right){\bf X} + \left(\begin{array}{c}
-3\cos{t}\\
0
\end{array}\right) }$
(c)
$\displaystyle{ \left\{\begin{array}{rl}
x_{1}^{\prime} =& x_{1} + x_{2} + x_{3}...
...2}\\
x_{3}^{\prime} =& -2x_{1} -x_{2} -2x_{3} + 3e^{-t}
\end{array} \right . }$
(d)
$\displaystyle{ {\bf X}^{\prime} = \left(\begin{array}{rrrr}
0&1&0&0\\
0&0&1&0\...
...right){\bf X} + \left(\begin{array}{c}
t^{2}\\
0\\
0\\
0
\end{array}\right)}$
2.
次の微分方程式を連立微分方程式に直して解け.

$\displaystyle y^{\prime\prime} + 4y^{\prime} + 3y = t $

3.
次の微分方程式を消去法を用いて解け.
(a)
$\displaystyle{ \left\{\begin{array}{rl}
x_{1}^{\prime} + x_{2}^{\prime} - 2x_{1...
...^{t}\\
x_{1}^{\prime} + x_{2}^{\prime} - x_{2} &= e^{4t}
\end{array}\right . }$
(b)
$\displaystyle{ \left\{\begin{array}{rl}
x_{1}^{\prime\prime} + x_{2}^{\prime} -...
..._{1}^{\prime} + x_{2}^{\prime\prime} - x_{1} + x_{2} &= 0
\end{array}\right . }$
(c)
$\displaystyle{ \left\{\begin{array}{rl}
2x_{1}^{\prime} + x_{2}^{\prime} + x_{1...
...\
x_{1}^{\prime} + x_{2}^{\prime} + 2x_{1} + 2x_{2} &= 2
\end{array}\right . }$
(d)
$\displaystyle{ \left\{\begin{array}{rl}
x_{1}^{\prime\prime} - x_{2}^{\prime} &...
...x_{1}^{\prime} + x_{2}^{\prime} - 3x_{1} + x_{2} &= 2t - 1
\end{array}\right .}$