6.3 解答

6.3

1.

(a)

$\displaystyle f_{e}(x) = \left\{\begin{array}{ll}
x+1, & -2 < x < -1\\
-x-1,...
...-1 < x < 0\\
x - 1, & 0 < x < 1\\
1 - x, & 1 < x < 2
\end{array} \right . $

(b)

$\displaystyle f_{e}(x) = \left\{\begin{array}{ll}
e^{-x}, & -\pi < x <0\\
e^...
... & -\pi < x <0\\
e^{x}, & 0 < x < \pi
\end{array} \right . \ \ \framebox{終} $

2.

(a) まず$f(x)$のフーリエ余弦級数を求める.

$\displaystyle f_{e}(x) \sim \frac{a_{0}}{2} + \sum_{n=1}^{\infty}a_{n}\cos{n\pi x} $


$\displaystyle a_{0}$ $\displaystyle =$ $\displaystyle \frac{2}{1}\int_{0}^{1}f(x)dx = 2 \int_{0}^{1}x^2 dx = \frac{2}{3}$  
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{1}\int_{0}^{1}f(x)\cos{n\pi x}dx$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{1}x^2 \cos{n\pi x} dx \ \ \ \left(\begin{array}{ll}
u ...
...= \cos{n\pi x}\\
du = 2x dx & v = \frac{\sin{n\pi x}}{n\pi}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle 2[\frac{x^2 \sin{n\pi x}}{n\pi} \mid_{0}^{1} - \frac{2}{n\pi}\int...
...v = \sin{n\pi x}\\
du = dx & v = -\frac{\cos{n\pi x}}{n\pi}
\end{array}\right)$  
  $\displaystyle =$ $\displaystyle 2[\frac{\sin{n\pi}}{n\pi} - \frac{2}{n\pi}(-\frac{x\cos{n\pi x}}{n\pi}\mid_{0}^{1} + \frac{1}{n\pi}\int_{0}^{1}\cos{n\pi x}dx)]$  
  $\displaystyle =$ $\displaystyle -\frac{4}{n\pi}(\frac{-\cos{n\pi}}{n\pi} + \frac{\sin{n\pi x}}{(n\pi)^{2}}\mid_{0}^{1})$  
  $\displaystyle =$ $\displaystyle -\frac{4}{n\pi}(\frac{-\cos{n\pi}}{n\pi} + \frac{\sin{n\pi}}{(n\pi)^{2}})$  
  $\displaystyle =$ $\displaystyle \frac{4\cos{n\pi}}{(n\pi)^2} = \frac{4(-1)^n}{(n\pi)^2}$  

より

$\displaystyle f_{e}(x) \sim \frac{1}{3} + \frac{4}{\pi^2}\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}\cos{n\pi x}. $

\includegraphics[width=10cm]{DFQ/Fig6.3-2(a)1.eps}

次に$f(x)$のフーリエ正弦級数を求める.

$\displaystyle f_{o}(x) \sim \sum_{n=1}^{\infty}b_{n}\sin{n\pi x} $


$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{1}\int_{0}^{1}f(x)\sin{n\pi x}dx$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{1}x^2 \sin{n\pi x} dx \ \ \ \left(\begin{array}{ll}
u ...
...in{n\pi x} dx\\
du = 2x dx & v = -\frac{\cos{n\pi x}}{n\pi}
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle 2[\frac{-x^2 \cos{n\pi x}}{n\pi} \mid_{0}^{1} + \frac{2}{n\pi}\in...
... = \cos{n\pi x}dx\\
du = dx & v = \frac{\sin{n\pi x}}{n\pi}
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle 2[\frac{-\cos{n\pi}}{n\pi} + \frac{2}{n\pi}(\frac{x\sin{n\pi x}}{n\pi}\mid_{0}^{1} - \frac{1}{n\pi}\int_{0}^{1}\sin{n\pi x}dx)]$  
  $\displaystyle =$ $\displaystyle 2[\frac{-\cos{n\pi}}{n\pi} + \frac{2}{n\pi}(\frac{\sin{n\pi }}{n\pi}+ \frac{\cos{n\pi x}}{(n\pi)^2}\mid_{0}^{1})]$  
  $\displaystyle =$ $\displaystyle 2[\frac{-\cos{n\pi}}{n\pi} + \frac{2}{n\pi}( \frac{\cos{n\pi} - 1}{(n\pi)^2})]$  
  $\displaystyle =$ $\displaystyle 2[\frac{-(-1)^n}{n\pi} + \frac{2((-1)^n - 1)}{(n\pi)^3}]$  

より

$\displaystyle f_{o}(x) \sim 2\sum_{n=1}^{\infty}[\frac{(-1)^{n+1}}{n\pi} + \frac{2((-1)^{n} - 1)}{(n\pi)^3}]\sin{n\pi x} $

\includegraphics[width=10cm]{DFQ/Fig6.3-2(a)2.eps} \framebox{終}

(b) まず$f(x)$のフーリエ余弦級数を求める.

$\displaystyle f_{e}(x) \sim \frac{a_{0}}{2} + \sum_{n=1}^{\infty}a_{n}\cos{n x} $


$\displaystyle a_{0}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\sin{\frac{x}{2}} dx = \frac{2}{\pi}(-2\cos{\frac{x}{2}}\mid_{0}^{\pi})$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}(-2\cos{\frac{\pi}{2}} + 2) = \frac{4}{\pi}.$  
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\sin{\frac{x}{2}}\cos{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\frac{1}{2}(\sin{(n + \frac{1}{2})}x - \sin{(n - \frac{1}{2})}x )dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-\cos{(n+\frac{1}{2})x}}{n + \frac{1}{2}} + \frac{\cos{(n-\frac{1}{2})x}}{n - \frac{1}{2}}\mid_{0}^{\pi}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-\cos{(n+\frac{1}{2})\pi + 1}}{n + \frac{1}{2}} + \frac{\cos{(n-\frac{1}{2})\pi - 1}}{n - \frac{1}{2}}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{\sin{n\pi} + 1}{n + \frac{1}{2}} + \frac{-\sin{n\pi } - 1}{n - \frac{1}{2}}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-1}{n^2 - \frac{1}{4}}] = \frac{4}{\pi}[\frac{-1}{4n^2 - 1}]$  

より

$\displaystyle f_{e}(x) \sim \frac{2}{\pi} - \frac{4}{\pi}\sum_{n=1}^{\infty}\frac{1}{4n^2 - 1}\cos{nx}$

\includegraphics[width=10cm]{DFQ/Fig6.3-2(b)1.eps}

次に$f(x)$のフーリエ正弦級数を求める.

$\displaystyle f_{o}(x) \sim \sum_{n=1}^{\infty}b_{n}\sin{nx} $


$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\sin{\frac{x}{2}} \sin{n x} dx = \frac...
...nt_{0}^{\pi}\frac{1}{2}(\cos{(n - \frac{1}{2})}x - \cos{(n + \frac{1}{2})}x )dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{\sin{(n-\frac{1}{2})x}}{n - \frac{1}{2}} - \frac{\sin{(n+\frac{1}{2})x}}{n + \frac{1}{2}}\mid_{0}^{\pi}$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{\sin{(n-\frac{1}{2})\pi }}{n - \frac{1}{2}} - \frac{\sin{(n+ \frac{1}{2})\pi}}{n + \frac{1}{2}}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-\cos{n\pi} }{n - \frac{1}{2}} - \frac{\cos{n\pi } }{n + \frac{1}{2}} ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-2n\cos{n\pi}}{n^2 - \frac{1}{4} } ]$  
  $\displaystyle =$ $\displaystyle \frac{8}{\pi}[\frac{n(-1)^{n+1}}{4n^2 - 1}]$  

より

$\displaystyle f_{o}(x) \sim \frac{8}{\pi}\sum_{n=1}^{\infty}\frac{n(-1)^{n+1}}{4n^2 - 1}\sin{nx} \ $

\includegraphics[width=10cm]{DFQ/Fig6.3-2(b)2.eps} \framebox{終}

(c) まず$f(x)$のフーリエ余弦級数を求める.

$\displaystyle f_{e}(x) \sim \frac{a_{0}}{2} + \sum_{n=1}^{\infty}a_{n}\cos{n x} $


$\displaystyle a_{0}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\cos{x} dx = \frac{2}{\pi}(-\sin{x}\mid_{0}^{\pi}) = 0.$  
$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\cos{x}\cos{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\frac{1}{2}(\cos{(n + 1)x} + \cos{(n -1)x} )dx$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{1}{\pi}[\frac{\sin{(n+1)x}}{n + 1}...
...
\frac{1}{\pi}[\frac{\sin{2x}}{2} + x \mid_{0}^{\pi} & n = 1
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{1}{\pi}[\frac{\sin{(n+1)\pi}}{n + ...
...)\pi}}{n - 1} = 0 & n \neq 1\\
\frac{1}{\pi}({\pi}) & n = 1
\end{array}\right.$  

より

$\displaystyle f_{e}(x) \sim \cos{x}$

次に$f(x)$のフーリエ正弦級数を求める.

$\displaystyle f_{o}(x) \sim \sum_{n=1}^{\infty}b_{n}\sin{nx} $


$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\cos{x} \sin{n x} dx = \frac{2}{\pi}\int_{0}^{\pi}\frac{1}{2}(\sin{(n + 1)x} + \sin{(n -1)x} )dx$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{1}{\pi}[-\frac{\cos{(n+1)x}}{n + 1...
...\\
\frac{1}{\pi}[-\frac{\cos{2x}}{2} \mid_{0}^{\pi} & n = 1
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{1}{\pi}[-\frac{\cos{(n+1)\pi + 1}}...
...rac{1}{\pi}[-\frac{\cos{2\pi}}{2} + \frac{1}{2}] & \ \ n = 1
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{cl}
\frac{1}{\pi}[-\frac{2n\cos{(n+1)\pi + 2n}}{n^2 - 1}] & \ \ n \neq 1\\
0& \ \ n = 1
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{(1 - n(-1)^{n+1})}{n^2 - 1}] \ \ \ n \geq 2$  

より

$\displaystyle f_{0}(x) \sim \frac{2}{\pi}\sum_{n=2}^{\infty}\frac{n(1-n(-1)^{n+1})}{n^2 - 1}\sin{nx} \ $

\includegraphics[width=10cm]{DFQ/Fig6.3-2(a)2.eps} \framebox{終}

3.

(a) $f(x)$の複素系フーリエ級数を求める.

$\displaystyle f(x) \sim \sum_{n = -\infty}^{\infty}c_{n}e^{inx} $

$\displaystyle c_{n} = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)e^{-inx}dx $

より
$\displaystyle c_{0}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}\vert x\vert dx = \frac{1}{\pi}\int_{0}^{\pi}x dx = \frac{\pi}{2}$  
$\displaystyle c_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}\vert x\vert e^{-inx}dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\int_{-\pi}^{\pi}\vert x\vert(\cos{nx} + i\sin{nx})dx ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\int_{-\pi}^{\pi}\vert x\vert\cos{nx}dx] = \frac{1}{\pi}\int_{0}^{\pi}x\cos{nx} dx ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{x\sin{nx}}{n}\mid_{0}^{\pi} - \frac{1}{n} \int_{0}^{\infty}\sin{nx}dx]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[ \frac{\cos{nx}}{n^2}\mid_{0}^{\pi} = \frac{1}{\pi n^2 }(\cos{n \pi} - 1)$  
  $\displaystyle =$ $\displaystyle \frac{(-1)^{n} - 1}{\pi n^2}$  

より

$\displaystyle f(x) \sim \frac{\pi}{2} + \frac{1}{\pi}\sum_{n = -\infty}^{\infty}\frac{(-1)^{n} - 1}{n^2}e^{inx} \ \framebox{終}$

(b) $f(x)$の複素系フーリエ級数を求める.

$\displaystyle c_{0}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}x^{2}dx = \frac{1}{\pi}\int_{0}^{\pi}x^{2} dx = \frac{\pi^{2}}{3}$  
$\displaystyle c_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{2\pi}\int_{-\pi}^{\pi}x^{2}e^{-inx}dx \ \left(\begin{arr...
... & dv = e^{-inx}dx\\
du = 2x dx & v = - \frac{e^{-inx}}{in}
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\frac{-x^{2}e^{-inx}}{in}\mid_{-\pi}^{\pi} + \frac{2}{in}\int_{-\pi}^{\pi}xe^{-inx}dx$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\frac{-\pi^{2}e^{-in\pi} + (-\pi)^{2}e^{in\pi}}{in...
...ac{-xe^{-inx}}{in}\mid_{-\pi}^{\pi} + \frac{1}{in}\int_{-\pi}^{\pi}e^{-inx}dx)]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\frac{2(-\pi e^{-in\pi} -\pi e^{in\pi})}{(in)^{2}}...
...ac{1}{(in)^{3}}e^{-inx}\mid_{-\pi}^{\pi}] \ (e^{in\pi} = e^{-in\pi} = (-1)^{n})$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\frac{-4\pi (-1)^{n}}{(in)^{2}} - \frac{1}{(in)^{3}}(e^{-in\pi} - e^{in\pi})]$  
  $\displaystyle =$ $\displaystyle \frac{1}{2\pi}[\frac{-4\pi(-1)^{n}}{(in)^2} ]= \frac{(-1)^n}{n^2}$  

より

$\displaystyle f(x) \sim \frac{\pi^2}{3} + \sum_{n=-\infty}^{\infty}\frac{(-1)^{n}}{n^2}e^{-in x} \ \framebox{終} $