6.2 解答

6.2

(a) 1.

$\displaystyle a_{0} = \frac{1}{\pi}[\int_{-\pi}^{0}1dx + \int_{0}^{\pi}2dx] = \frac{1}{\pi}[\pi + 2\pi] = 3 $

次に, $\int_{0}^{\pi}\cos{nx}dx = 0$より

$\displaystyle a_{n} = \frac{1}{\pi}[\int_{-\pi}^{0}\cos{nx}dx + \int_{0}^{\pi}2\cos{nx}dx] = 0 $


$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\int_{-\pi}^{0}\sin{nx}dx + \int_{0}^{\pi}2\sin{nx}dx]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[-\frac{\cos{nx}}{n}\mid_{-\pi}^{0} - \frac{2\cos{nx}}{n}\mid_{0}^{\pi}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{-1 + \cos{n\pi}}{n} - \frac{2(\cos{n\pi} - 1)}{n}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{1 - \cos{n\pi}}{n}] = \frac{1 - (-1)^{n}}{n\pi}$  

したがって,$f(x)$のフーリエ級数は

$\displaystyle f(x) \sim \frac{3}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^{n}}{n\pi}\sin{nx} $

またフーリエ級数のグラフは
\includegraphics[width=10cm]{DFQ/Fig6.2-1(a).eps} \framebox{終}

(b) $f(x) = \vert\sin{x}\vert$は偶関数より$b_{n} = 0$

$\displaystyle a_{0} = \frac{1}{\pi}\int_{-\pi}^{\pi}\vert\sin{x}\vert dx = \fra...
...int_{0}^{\pi}\sin{x}dx = \frac{2}{\pi}[-\cos{x}\mid_{0}^{\pi}] = \frac{4}{\pi} $


$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}\sin{x}\cos{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}[\frac{\sin{(n + 1)x} - \sin{(n-1)x}}{2}dx$  
  $\displaystyle =$ $\displaystyle \left\{\begin{array}{ll}
\frac{1}{\pi}[-\frac{\cos{(n+1)x}}{n+1} ...
...{\cos{(n-1)x}}{n-1} \mid_{0}^{\pi}] & (n \neq 1)\\
0 & n =1
\end{array}\right.$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[-\frac{\cos{(n+1)\pi}}{n+1} +\frac{\cos{(n-1)\pi}}{n-1} + \frac{1}{n+1} - \frac{1}{n-1}]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[-\frac{(-1)^{n+1}}{n+1} +\frac{(-1)^{n-1}}{n-1} + \frac{-2}{n^2 - 1} ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{n((-1)^{n-1} - (-1)^{n+1}) + (-1)^{n+1} + (-1)^{n-1} -2}{n^2 - 1} ]$  
  $\displaystyle =$ $\displaystyle \frac{1}{\pi}[\frac{2(-1)^{n+1} -2}{n^2 - 1} ]$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{(-1)^{n+1} -1}{n^2 - 1} ]$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{-2}{4m^2 - 1}] \ \ (n = 2m)$  

よって

$\displaystyle f(x) \sim \frac{2}{\pi} - \frac{4}{\pi}\sum_{m=1}^{\infty}\frac{1}{4m^2 - 1}\cos{2mx}. $

またフーリエ級数のグラフは
\includegraphics[width=10cm]{DFQ/Fig6.2-1(b).eps} \framebox{終}

(c) $f(x) = x$は奇関数より $a_{n} = 0 \ (n \geq 0)$.

$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{\pi}\int_{-\pi}^{\pi}x \sin{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[-\frac{x\cos{nx}}{n}\mid_{0}^{\pi} + \frac{1}{n}\int_{0}^{\pi}\cos{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{1}{n^2}\sin{nx}\mid_{0}^{\pi}$  
  $\displaystyle =$ $\displaystyle \frac{-2\pi \cos{n\pi}}{n\pi} = \frac{2(-1)^{n+1}}{n}$  

よって

$\displaystyle f(x) \sim 2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin{nx}. $

またフーリエ級数のグラフは
\includegraphics[width=10cm]{DFQ/Fig6.2-1(c).eps} \framebox{終}

2. $f(x) = x^2$より$f(x)$は偶関数.よって$b_{n} = 0$.また

$\displaystyle a_{0} = \frac{2}{\pi}\int_{0}^{\pi}x^2 dx = \frac{2}{\pi}(\frac{x^3}{3}\mid_{0}^{\pi} = \frac{2 \pi^2}{3},$


$\displaystyle a_{n}$ $\displaystyle =$ $\displaystyle \frac{2}{\pi}\int_{0}^{\pi}x^2 \cos{nx}dx \ \ \left(\begin{array}...
...x^2 & dv = \cos{nx}dx\\
du = 2xdx & v = \frac{\sin{nx}}{n}
\end{array}\right .$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{x^2 \sin{nx}}{n}\mid_{0}^{\pi} - \frac{2}{n}\...
... = x & dv = \sin{nx}dx\\
du = dx & v = -\frac{\cos{nx}}{n}
\end{array}\right .$  
  $\displaystyle =$ $\displaystyle \frac{-4}{n\pi}[\frac{-x \cos{nx}}{n}\mid_{0}^{\pi} + \frac{1}{n}\int_{0}^{\pi}\cos{nx}dx ]$  
  $\displaystyle =$ $\displaystyle \frac{-4}{n\pi}[\frac{-\pi \cos{n\pi}}{n}$  
  $\displaystyle =$ $\displaystyle \frac{4 (-1)^{n}}{n^2}$  

ここでDirichlet条件より

$\displaystyle \frac{f(x-0) + f(x+0)}{2} = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^2} \cos{nx} $

となるので$x = \pi$とおくと, $\cos{n\pi} = (-1)^{n}$より

$\displaystyle \pi^2 = f(\pi) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty}\frac{1}{n^2} $

よって

$\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2} = \frac{\pi^2}{6} . $

また$x = 0$とおくと,

$\displaystyle 0 = f(0) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty}\frac{(-1)^{n}}{n^2} $

よって

$\displaystyle \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12} \ \framebox{終}. $

3. $f(x) = x$は奇関数より $a_{n} = 0 \ (n \geq 0)$.

$\displaystyle b_{n}$ $\displaystyle =$ $\displaystyle \frac{1}{\pi}\int_{-\pi}^{\pi}x \sin{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[-\frac{x\cos{nx}}{n}\mid_{0}^{\pi} + \frac{1}{n}\int_{0}^{\pi}\cos{nx}dx$  
  $\displaystyle =$ $\displaystyle \frac{2}{\pi}[\frac{1}{n^2}\sin{nx}\mid_{0}^{\pi}$  
  $\displaystyle =$ $\displaystyle \frac{-2\pi \cos{n\pi}}{n\pi} = \frac{2(-1)^{n+1}}{n}$  

よって

$\displaystyle f(x) \sim 2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin{nx}$

また$f(x)$はDirichlet条件を満たすので

$\displaystyle \frac{\pi}{2} = f(\frac{\pi}{2}) = 2\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\sin{\frac{n \pi}{2}} $

ここで

$\displaystyle \sin{\frac{n\pi}{2}} = \left\{\begin{array}{ll}
(-1)^{m} & n = 2m+1\\
0 & n =2m
\end{array} \right .$

より
$\displaystyle \frac{\pi}{2}$ $\displaystyle =$ $\displaystyle 2\sum_{m=0}^{\infty}\frac{(-1)^{2m+2}}{2m+1}(-1)^{m}$  
  $\displaystyle =$ $\displaystyle 2\sum_{m=0}^{\infty}\frac{(-1)^{m}}{2m+1}$  

よって

$\displaystyle \sum_{m=0}^{\infty}\frac{(-1)^{m}}{2m+1} = \frac{\pi}{4} \ \framebox{終}. $