6.8 解答

6.8

1.

(a) $f(x,y) = 2x^2 + 5xy - 3y^2 - 1 = 0$とおき,$f(x,y)$の全微分を求めると,

$\displaystyle df = f_{x}dx + f_{y}dy = (4x + 5y)dx + (5x - 6y)dy = 0$

これより,

$\displaystyle \frac{dy}{dx} = -\frac{4x + 5y}{5x - 6y}.$


$\displaystyle \frac{d^2 y}{dx^2}$ $\displaystyle =$ $\displaystyle -\frac{(4 + 5\frac{dy}{dx})(5x - 6y) - (4x + 5y)(5 - 6\frac{dy}{dx})}{(5x - 6y)^2}$  
  $\displaystyle =$ $\displaystyle -\frac{4(5x-6y)^2 - 10(4x+5y)(5x-6y) - 6(4x+5y)^2}{(5x - 6y)^3}$  

(b)

$f(x,y) = y - e^{x+y} = 0$とおき,$f(x,y)$の全微分を求めると,

$\displaystyle df = f_{x}dx + f_{y}dy = -e^{x+y}dx + (1 - e^{x+y})dy = 0$

これより,

$\displaystyle \frac{dy}{dx} = -\frac{e^{x+y}}{1 - e^{x+y}}.$

次に, $\frac{d^2 y}{dx^2}$を求める.ここでは,

$\displaystyle \frac{d^2 y}{dx^2} = - \frac{f_{xx}f_{y}^2 - 2f_{xy}f_{x}f_{y} + f_{xx}f_{y}^2}{f_{y}^{3}}$

を用いる.

$\displaystyle f_{xx} = -e^{x+y}, f_{xy} = -e^{x+y}, f_{yy} = -e^{x+y}$

より
$\displaystyle \frac{d^2 y}{dx^2}$ $\displaystyle =$ $\displaystyle -\frac{-e^{x+y}(1-e^{x+y})^2 + 2e^{x+y}(-e^{x+y})(1 - e^{x+y}) - e^{x+y}e^{2(x+y)}}{(1 - e^{x+y})^3}$  
  $\displaystyle =$ $\displaystyle -\frac{-e^{x+y} + 2e^{2(x+y)} - e^{3(x+y)} - 2e^{2(x+y)} + 2e^{3(x+y)} - e^{3(x+y)}}{(1 - e^{x+y})^3}$  
  $\displaystyle =$ $\displaystyle \frac{e^{x+y}}{(1 - e^{x+y})^{3}}$  

(c)

$f(x,y) = x^2 - y^2 - xy= 0$とおき,$f(x,y)$の全微分を求めると,

$\displaystyle df = f_{x}dx + f_{y}dy = (2x-y)dx + (-2y-x)dy = 0$

これより,

$\displaystyle \frac{dy}{dx} = \frac{2x - y}{2y+x}.$

次に, $\frac{d^2 y}{dx^2}$を求める.ここでは,

$\displaystyle \frac{d^2 y}{dx^2} = - \frac{f_{xx}f_{y}^2 - 2f_{xy}f_{x}f_{y} + f_{xx}f_{y}^2}{f_{y}^{3}}$

を用いる.

$\displaystyle f_{xx} = 2, f_{xy} = -1, f_{yy} = -2$

より
$\displaystyle \frac{d^2 y}{dx^2}$ $\displaystyle =$ $\displaystyle -\frac{2(-2y-x)^2 + 2(2x-y)(-2y-x) -2(2x-y)^2}{(-2y-x)^3}$  
  $\displaystyle =$ $\displaystyle \frac{2(x+2y)^2 -2(2x-y)(x+2y) -2(2x-y)^2}{(x+2y)^3}$  

(d)

$f(x,y) = \log{\sqrt{x^2 + y^2}} - \tan^{-1}{\frac{y}{x}} = 0$とおき,$f(x,y)$の全微分$df$を求める.

$\displaystyle f_{x}$ $\displaystyle =$ $\displaystyle \frac{1}{2}(\frac{2x}{x^2 + y^2}) - \frac{-\frac{y}{x^2}}{1 + (\frac{y}{x})^2}$  
  $\displaystyle =$ $\displaystyle \frac{x}{x^2 + y^2} + \frac{y}{x^2 + y^2} = \frac{x+y}{x^2 + y^2}$  
$\displaystyle f_{y}$ $\displaystyle =$ $\displaystyle \frac{1}{2}(\frac{2y}{x^2 + y^2} - \frac{\frac{1}{x}}{1 + (\frac{y}{x})^2}$  
  $\displaystyle =$ $\displaystyle \frac{y}{x^2 + y^2} - \frac{x}{x^2 + y^2} = \frac{y - x}{x^2 + y^2}$  

より

$\displaystyle \frac{dy}{dx} = - \frac{f_{x}}{f_{y}} = - \frac{x+y}{y-x} = \frac{x+y}{x-y}$

次に, $\frac{d^2 y}{dx^2}$を求める.ここでは,直接求める.

$\displaystyle \frac{d^2 y}{dx^2}$ $\displaystyle =$ $\displaystyle \frac{(1 + \frac{dy}{dx})(x-y) - (x+y)(1 - \frac{dy}{dx})}{(x-y)^2}$  
  $\displaystyle =$ $\displaystyle \frac{(x - y + x + y)(x-y) - (x-y)(x-y-x-y) }{(x - y)^3}$  
  $\displaystyle =$ $\displaystyle \frac{2x^2 - 2xy + 2xy + 2y^2}{(x-y)^3}$  
  $\displaystyle =$ $\displaystyle \frac{2(x^2 + y^2)}{(x-y)^3}$  

2.

(a) $f(x,y,z) = x^2 + y^2 + z^2 - 4 = 0, g(x,y) = x^2 + y^2 - 4x = 0$とおき全微分を求めると,

$\displaystyle df$ $\displaystyle =$ $\displaystyle f_{x}dx + f_{y}dy + f_{z}dz = 2xdx + 2ydy + 2zdz = 0$ (10.5)
$\displaystyle dg$ $\displaystyle =$ $\displaystyle g_{x}dx + g_{y}dy = (2x -4)dx + 2y dy = 0$ (10.6)

式(10.6)より,

$\displaystyle \frac{dy}{dx} = \frac{4-2x}{2y} = \frac{2-x}{y}$

また,式(10.5)と式(10.6)より$dy$の項を消去すると

$\displaystyle 4dx + 2zdz = 0$

よって

$\displaystyle \frac{dz}{dx} = -\frac{2}{z}.$

(b) $f(x,y,z) = xyz -1 = 0, g(x,y,z) = xy + yz + zx - 1 = 0$とおき全微分を求めると,

$\displaystyle df$ $\displaystyle =$ $\displaystyle f_{x}dx + f_{y}dy + f_{z}dz = yzdx + xzdy + xydz = 0$ (10.7)
$\displaystyle dg$ $\displaystyle =$ $\displaystyle g_{x}dx + g_{y}dy + g_{z}dz = (y + z)dx + (x + z) dy + (y + x)dz = 0$ (10.8)

ここで,式(10.7)と式(10.8)より$dz$の項を消去すると

$\displaystyle ((y+x)yz - xy(y+z))dx + ((y+x)xz - xy(x+z))dy = 0$

よって

$\displaystyle \frac{dy}{dx} = -\frac{y^2 z - xy^2}{x^2 z - x^2 y} = \frac{y^2 (x-z)}{x^2 (z-y)}.$

また,式(10.7)と式(10.8)より$dy$の項を消去すると

$\displaystyle ((x+z)yz - xz(y+z))dx + ((x+z)xy - xz(y+x))dz = 0$

$\displaystyle z^2(y-x)dx + x^2(y-z)dz = 0$

よって

$\displaystyle \frac{dz}{dx} = \frac{z^2 (x-y)}{x^2 (y-z)}.$

3.

$2x^2 + 5y^2 = 12$より $\frac{dy}{dx}$を求めると,

$\displaystyle \frac{dy}{dx} = -\frac{f_{x}}{f_{y}} = -\frac{4x}{10y} = -\frac{2x}{5y}$

これより,接線の傾きは

$\displaystyle \frac{dy}{dx}\mid_{(1,\sqrt{2})} = -\frac{2}{5\sqrt{2}} = -\frac{\sqrt{2}}{5}$

よって,点 $(1,\sqrt{2})$を通る接線の方程式は

$\displaystyle y - \sqrt{2} = -\frac{\sqrt{2}}{5}(x - 1).$

また,法線は接線と垂直なので,その傾きは $-\frac{5\sqrt{2}}{2}$.よって点 $(1,\sqrt{2})$を通る法線の方程式は

$\displaystyle y - \sqrt{2} = -\frac{5\sqrt{2}}{2}(x-1).$

4.

$f(x,y,z) = \tan^{-1}{\frac{y}{x}} - z = 0$とおくと

$\displaystyle \nabla f(x,y,z) = (\frac{\frac{-y}{x}}{1 + (\frac{y}{x})^2}, \fra...
...x}}{1 + (\frac{y}{x})^2}, -1) = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, -1)$

よって

$\displaystyle \nabla f(1,1,\frac{\pi}{2}) = (-\frac{1}{2}, \frac{1}{2}, -1)$

ここで,$\nabla f$は曲面 $f(x,y,z) = 0$に直交するので,接平面$\Gamma$上に任意の点$(x,y,z)$を取ると,ベクトル $(x - 1, y - 1, z - \frac{\pi}{2})$ $\nabla f(1,1,\frac{\pi}{2})$は直交する.よって,接平面の方程式は

$\displaystyle (x - 1, y - 1, z - \frac{\pi}{2}) \cdot (-\frac{1}{2}, \frac{1}{2}, -1) = 0$

又は,

$\displaystyle -\frac{1}{2}(x-1) + \frac{1}{2}(y-1) - (z - \frac{\pi}{2}) = 0$

法線は$\nabla f$と同方向にあるので,法線上に任意の点$(x,y,z)$を取ると,

$\displaystyle (x - 1, y - 1, z - \frac{\pi}{2}) = t(-\frac{1}{2}, \frac{1}{2}, -1)$

又は,

$\displaystyle t = \frac{x-1}{-\frac{1}{2}} = \frac{y-1}{\frac{1}{2}} = \frac{z - \frac{\pi}{2}}{-1} $

5.

(a) まず, $f(x,y) = 0, f_{x}(x,y) = 0$ を満たす $(x,y)$ を求めます.

$\displaystyle f(x,y) = 8x^2 + 4xy + 5y^2 - 36 = 0,  f_{x}(x,y) = 16x + 4y = 0$

より $y = -4x$. これを $f(x,y) = 0$に代入すると $8x^2 - 16x^2 + 80x^2 - 36 = 36(2x^2 - 1) = 0$. よって, $(x,y) = (\frac{1}{\sqrt{2}},-2\sqrt{2}),(-\frac{1}{\sqrt{2}},2\sqrt{2})$.次に

$\displaystyle f_{xx} = 16,  f_{y} = 4x + 10y $

より $\displaystyle{\frac{d^{2}y}{dx^{2}}}$ を計算すると

$\displaystyle \frac{d^{2}y}{dx^2}\mid_{(\frac{1}{\sqrt{2}},-2\sqrt{2})} = -\fra...
...\sqrt{2})}{f_{y}(\frac{1}{\sqrt{2}},-2\sqrt{2})} = -\frac{16}{-18\sqrt{2}} > 0 $

$\displaystyle \frac{d^{2}y}{dx^2}\mid_{(-\frac{1}{\sqrt{2}},2\sqrt{2})} = -\fra...
...2\sqrt{2})}{f_{y}(-\frac{1}{\sqrt{2}},2\sqrt{2})} = -\frac{16}{18\sqrt{2}} < 0 $

したがって, $x = \frac{1}{\sqrt{2}}$ のときの $y = -2\sqrt{2}$ は極小値, $x = -\frac{1}{\sqrt{2}}$ のときの $y = 2\sqrt{2}$ は極大値.

(b) まず, $f(x,y) = 0, f_{x}(x,y) = 0$ を満たす $(x,y)$ を求めます.

$\displaystyle f(x,y) = x^2 y + x + y = 0,  f_{x}(x,y) = 2xy + 1= 0$

より $y = -\frac{1}{2x}$.これを $f(x,y) = 0$に代入すると $x^2(-\frac{1}{2x}) + x - \frac{1}{2x} = \frac{-x^2 + 2x^2 - 1}{2x} = \frac{x^2 -1}{2x} = 0$. よって, $(x,y) = (1, -\frac{1}{2}),(-1, \frac{1}{2})$.次に

$\displaystyle f_{xx} = 2y,  f_{y} = x^2 + 1 $

より $\displaystyle{\frac{d^{2}y}{dx^{2}}}$ を計算すると

$\displaystyle \frac{d^{2}y}{dx^2}\mid_{(1, -\frac{1}{2})} = -\frac{f_{xx}(1, -\frac{1}{2})}{f_{y}(1, -\frac{1}{2})} = -\frac{-1}{2} > 0 $

$\displaystyle \frac{d^{2}y}{dx^2}\mid_{(-1, \frac{1}{2})} = -\frac{f_{xx}(-1, \frac{1}{2})}{f_{y}(-1, \frac{1}{2})} = -\frac{1}{2} < 0 $

したがって, $x = 1$ のときの $y = -\frac{1}{2}$ は極小値, $x = -1$ のときの $y = \frac{1}{2}$ は極大値.

(c) まず, $f(x,y) = 0, f_{x}(x,y) = 0$ を満たす $(x,y)$ を求めます.

$\displaystyle f(x,y) = x^3 + y^3 - 6xy = 0,  f_{x}(x,y) = 3x^2 -6y= 0$

より $y = \frac{x^2}{2}$.これを $f(x,y) = 0$に代入すると $x^3 + \frac{x^6}{8} - 3x^3 = \frac{x^3(x^3 - 16)}{8} = 0$. よって, $(x,y) = (0, 0),(2^{4/3}, 2^{5/3})$.次に

$\displaystyle f_{xx} = 6x,  f_{y} = 3x^2 -6x $

より $(0,0)$$f_{y} = 0$となるので,$(0,0)$では極値はとらない. $(2^{4/3}, 2^{5/3})$ $\displaystyle{\frac{d^{2}y}{dx^{2}}}$ を計算すると

$\displaystyle \frac{d^{2}y}{dx^2}\mid_{(2^{4/3}, 2^{5/3})} = -\frac{f_{xx}(2^{4...
.../3}, 2^{5/3})} = -\frac{6 \cdot 2^{4/3}}{6 \cdot 2^{2/3} - 6\cdot 2^{5/3}} > 0 $

したがって, $x = 2^{4/3}$ のときの $y = 2^{5/3}$ は極小値