3.10 解答

3.10

1.

図形の面積を求めるには図を描く.

(a) $x = y^2$ $x = 3 - 2y^2$の交点を求めると $y^2 = 3 - 2y^2$より$y = \pm 1$となる.つまり,この2つの曲線は点$(1, -1)$と点$(1,1)$で交わっている.そこでこの図形の面積は横方向の長方形の面積$\Delta A$の和として考える.$y$軸に垂直な直線でこの図形を切断するとその幅は,右側の曲線 - 左側の曲線で与えられ,また高さは$y$軸方向に小さな幅となるので $\Delta y$で与えられる.よって

$\displaystyle \Delta A = (3 - 2y^2 - y^2) \Delta y$

となる.これより求める面積$A$
$\displaystyle A$ $\displaystyle =$ $\displaystyle \int_{-1}^{1}(3 - 2y^2 - y^2)dy = \int_{-1}^{1}(3 - 3y^2)dy$  
  $\displaystyle =$ $\displaystyle 3y - y^3 \mid_{-1}^{1} = (3-1) - (-3+1) = 4.$  

(b)

この図形は $t = \frac{\pi}{2}$で微分可能ではないので,面積を求めるには$t = 0$から $t = \frac{\pi}{2}$までの面積を求めて2倍する.縦方向に小さな幅を持つ長方形で切断すると切断面の面積$\Delta A$

$\displaystyle \Delta A = y \Delta x$

で与えられるので,求める面積$A$

$\displaystyle A = 2\int_{0}^{1}y dx$

ここで,$x,y$$t$でパラメター化されていることに注意すると,

\begin{displaymath}\begin{array}{l\vert lll}
x&0&\to&1\ \hline
t&\pi/2&\to&0
\end{array}\end{displaymath}

となる.したがって,
$\displaystyle A$ $\displaystyle =$ $\displaystyle 2\int_{0}^{1}y dx = \int_{\pi/2}^{0}\sin^{3}{t}(3\cos^{2}{t}(-\sin{t})dt$  
  $\displaystyle =$ $\displaystyle 6\int_{0}^{\pi/2}\sin^{4}{\cos^{2}{t}}dt$  
  $\displaystyle =$ $\displaystyle 6\int_{0}^{\pi/2}\sin^{4}{t}(1 - \sin^{2}{t})dt = 6\int_{0}^{\pi/2}(\sin^{4}{t} - \sin^{6}{t})dt$  

となる.ここで,次の公式を用いる

$\displaystyle \int_{0}^{\pi/2}\sin^{n}{x}dx = \left\{\begin{array}{ll}
\frac{(...
...}\frac{\pi}{2}, & n  偶数\\
\frac{(n-1)!!}{n!!}, & n  奇数,
\end{array}\right.$

ただし, $n!! = n(n-2)(n-4)\cdots $を表わす. これより,

$\displaystyle A = 6(\frac{3\cdot1}{4 \cdot 2}\frac{\pi}{2} - \frac{5\cdot3\cdot1}{6\cdot4\cdot2}\frac{\pi}{2}) = \frac{3\pi}{16}.$

2.

(a) 回転軸に垂直な平面で切断すると,その断面はワッシャーと呼ばれる5円玉のような形になる.その断面積$A$は全体の面積から中の面積を引いたものになる. $(y-2)^2 = 1 - x^2$より $y = 2 \pm \sqrt{1 - x^2}$.これより

$\displaystyle y_{out} = 2 + \sqrt{1 - x^2},  y_{in} = 2 - \sqrt{1 - x^2}.$

よって,断面積$A$

$\displaystyle A = \pi (y_{out}^{2} - y_{in}^{2}) = 8\pi\sqrt{1 - x^2}.$

したがって,これに少しの厚み$\Delta x$をつけると,その体積$\Delta V$

$\displaystyle \Delta V = A \Delta x = 8\pi\sqrt{1 - x^2} \Delta x$

となるので,求める体積は

$\displaystyle V = \int_{-1}^{1}8\pi\sqrt{1-x^2}dx = 16\pi\int_{0}^{1}\sqrt{1 - x^2}dx$

ここで, $x = \sin{\theta}$とおくと, $dx = \cos{\theta}$, $\sqrt{1 - x^2} = \sqrt{1 - \sin^{2}{\theta}} = \cos{\theta}$となるので,

$\displaystyle V = 16\pi\int_{0}^{\pi/2}\cos{\theta}\cos{\theta}d \theta = 16\pi \frac{\pi}{4} = 4\pi^2.$

(b) この関数の図形はサイクロイドと呼ばれる.$x$軸との交点は$t = 0$$t = 2\pi$のときである.この図形を$x$軸に回転してできる回転体を$x$軸に垂直な平面で切断すると,その断面積は$\pi y^2$となる.これに少しの厚み$\Delta x$を付けると,その体積は

$\displaystyle \Delta V = \pi y^2 \Delta x.$

したがって,求める体積は

$\displaystyle V = \int_{0}^{2\pi}\pi y^2 dx$

となるが,この図形は$x = \pi$で対称となるので

$\displaystyle V = 2\int_{0}^{\pi}\pi y^2 dx.$

ここで,$x,y$をパラメター$t$で表わすと
$\displaystyle V$ $\displaystyle =$ $\displaystyle 2 \int_{0}^{\pi}\pi y^2 dx$  
  $\displaystyle =$ $\displaystyle 2\pi \int_{0}^{\pi} (1 - \cos{t})^2 (1 - \cos{t})dt$  
  $\displaystyle =$ $\displaystyle 2\pi \int_{0}^{\pi}(1 - \cos{t})^{3}dt$  

ここで, $1 - \cos{t} = 2\sin^{2}{\frac{t}{2}}$であることを用いると
$\displaystyle V$ $\displaystyle =$ $\displaystyle 16\pi \int_{0}^{\pi}\sin^{6}{\frac{t}{2}}dt$  
  $\displaystyle =$ $\displaystyle 32\pi \int_{0}^{\pi/2}\sin^{6}{\theta} d\theta  (\frac{t}{2} = \theta)とおく$  
  $\displaystyle =$ $\displaystyle 32\pi(\frac{5!!}{6!!}\frac{\pi}{2}) = 16\pi^2 (\frac{5\cdot3\cdot1}{6\cdot4\cdot2}) = 5\pi^2.$  

3.

(a) $x^{2/3} + y^{2/3} = 1$のグラフはアステロイドと呼ばれる.これをパラメター化すると $x = \cos^{3}{t},  y = \sin^{3}{t}  (0 \leq t \leq 2\pi)$となる. ここで, $x \geq 0, y \geq 0$の長さを求めて4倍する.曲線の1部分$\Delta L$

$\displaystyle \Delta L = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(\frac{\Delta x}{\Delta t})^2 + (\frac{\Delta y}{\Delta t})^2} \Delta t$

で与えられるので,求める曲線の長さは
$\displaystyle L$ $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{(-3\cos^{2}{t}\sin{t})^2 + (3\sin^{2}{t}\cos{t})^2} dt$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{9(\cos^{4}{t}\sin^{2}{t} + \sin^{4}{t}\cos^{2}{t})} dt$  
  $\displaystyle =$ $\displaystyle 12 \int_{0}^{\pi/2}\sqrt{\cos^{2}{t}\sin^{2}{t}(\cos^{2}{t} + \sin^{2}{t})} dt$  
  $\displaystyle =$ $\displaystyle 12 \int_{0}^{\pi/2} \cos{t}\sin{t} dt = 12 \frac{\sin^{2}{t}}{2}\mid_{0}^{\pi/2} = 6$  

(b) パラメター化を行なう. $x = \cos^{4}{t}, y = \sin^{4}{t}  (0 \leq t \leq \frac{\pi}{2})$とおくと

$\displaystyle \sqrt{x} + \sqrt{y} = \cos^{2}{t} + \sin^{2}{t} = 1$

求める曲線の長さは
$\displaystyle L$ $\displaystyle =$ $\displaystyle \int_{0}^{\pi/2}\sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$  
  $\displaystyle =$ $\displaystyle \int_{0}^{\pi/2}\sqrt{(-4\cos^{3}{t}\sin{t})^2 + (4\sin^{3}{t}\cos{t})^2} dt$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{\cos^{6}{t}\sin^{2}{t} + \sin^{6}{t}\cos^{2}{t}} dt$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{\cos^{4}{t} + \sin^{4}{t}}  \cos{t}\sin{t}dt$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi/2}\sqrt{(1 - \sin^{2}{t})^2 + \sin^{4}{t}}  \sin{t}\cos{t}dt$  

ここで, $u = \sin^{2}{t}$とおくと $du = 2\sin{t}\cos{t}dt$.また

\begin{displaymath}\begin{array}{l\vert lll}
t&0&\to&\frac{\pi}{2}\ \hline
u&0&\to&1
\end{array}\end{displaymath}

となるので,
$\displaystyle L$ $\displaystyle =$ $\displaystyle 2\int_{0}^{1}\sqrt{(1 - u)^2 + u^2} du = 2\int_{0}^{1}\sqrt{2u^2 - 2u + 1}du$  
  $\displaystyle =$ $\displaystyle 2\sqrt{2}\int_{0}^{1}\sqrt{(u - \frac{1}{1})^2 + \frac{1}{4}}du$  

$w = u - \frac{1}{2}$とおくと$dw = du$

\begin{displaymath}\begin{array}{l\vert lll}
u&0&\to&1\ \hline
w&-\frac{1}{2}&\to&\frac{1}{2}
\end{array}\end{displaymath}

より
$\displaystyle L$ $\displaystyle =$ $\displaystyle 2\sqrt{2}\int_{-1/2}^{1/2}\sqrt{w ^2 + \frac{1}{4}} dw$  

ここで,次の積分公式を用いると

$\displaystyle \int \sqrt{x^2 + A} dx = \frac{1}{2}(x\sqrt{x^2 + A} + A \log\vert x + \sqrt{x^2 + A}\vert)$


$\displaystyle L$ $\displaystyle =$ $\displaystyle 2\sqrt{2}\frac{1}{2}(w\sqrt{w^2 + \frac{1}{4}} + \frac{1}{4}\log\vert w + \sqrt{w^2 + \frac{1}{4}}\vert)\mid_{-1/2}^{1/2}$  
  $\displaystyle =$ $\displaystyle \sqrt{2}(\frac{1}{2\sqrt{2}} + \frac{1}{4}\log\vert\frac{1}{2} + ...
...(-\frac{1}{2\sqrt{2}} + \frac{1}{4}\log\vert-\frac{1}{2} + \frac{1}{\sqrt{2}}))$  
  $\displaystyle =$ $\displaystyle \sqrt{2}(\frac{1}{\sqrt{2}} + \frac{1}{4}\log\vert\frac{\frac{1}{2} + \frac{1}{\sqrt{2}}}{\frac{-1}{2} + \frac{1}{\sqrt{2}}})$  
  $\displaystyle =$ $\displaystyle 1 + \frac{\sqrt{2}}{4}\log\vert\frac{2 + \sqrt{2}}{2 - \sqrt{2}}\vert$  
  $\displaystyle =$ $\displaystyle 1 + \frac{\sqrt{2}}{4}\log\vert\frac{(2+\sqrt{2})^2}{2}\vert$  
  $\displaystyle =$ $\displaystyle 1 + \frac{sqrt{2}}{2}\log\vert 1 +\sqrt{2}\vert$  

(c) $r = 1 + \cos{\theta}$$x$軸で対称.また,

$\displaystyle \Delta L = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(\frac{\Delta x}{\Delta \theta})^2 + (\frac{\Delta y}{\Delta \theta})^2} \Delta \theta$

$x,y$を極形式になおすと, $x = r\cos{\theta}, y = r\sin{\theta}$.よって
$\displaystyle \frac{dx}{d\theta}$ $\displaystyle =$ $\displaystyle -\sin{\theta}\cos{\theta} - \sin{\theta}(1 + \cos{\theta})$  
  $\displaystyle =$ $\displaystyle -\sin{\theta} - 2\sin{\theta}\cos{\theta} = -\sin{\theta} -\sin{2\theta}$  
$\displaystyle \frac{dy}{d\theta}$ $\displaystyle =$ $\displaystyle -\sin^{2}{\theta} + \cos{\theta}(1 + \cos{\theta})$  
  $\displaystyle =$ $\displaystyle \cos{\theta} + \cos^{2}{\theta} - \sin^{2}{\theta} = \cos{\theta} + \cos{2\theta}$  

これより
$\displaystyle L$ $\displaystyle =$ $\displaystyle 2\int_{0}^{\pi}\sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\pi}\sqrt{2 + 2(\sin{\theta}\sin{2\theta} + \cos{\theta}\cos{2\theta})} d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\pi}\sqrt{2 + 2\cos{(2\theta - \theta)}} d\theta$  
  $\displaystyle =$ $\displaystyle 2\int_{0}^{\pi}\sqrt{2 + 2\cos{\theta}} d\theta$  
  $\displaystyle =$ $\displaystyle 2\sqrt{2}\int_{0}^{\pi}\sqrt{1 + \cos{\theta}}d\theta$  
  $\displaystyle =$ $\displaystyle 2\sqrt{2}\int_{0}^{\pi}\sqrt{2\cos^{2}{\frac{\theta}{2}}}d\theta$  
  $\displaystyle =$ $\displaystyle 4\int_{0}^{\pi}\cos{\frac{\theta}{2}}d\theta$  
  $\displaystyle =$ $\displaystyle 4 \cdot2 \cdot \sin{\frac{\theta}{2}}\mid_{0}^{\pi} = 8$