合成関数の偏微分法(differentiation of composite functions

演習問題

1.
$ \displaystyle{\frac{dz}{dt}}$ を求めよう.ただし, $ f$$ C^{1}$ 級とする.
(a)
$ \displaystyle{z = \log{(x^2 + y^2)}, x = t + \frac{1}{t}, y = t(t-1)}$
(b)
$ \displaystyle{z = f(t^2,e^t)}$
(c)
$ \displaystyle{z = f(2t, 4t^2)}$
(d)
$ \displaystyle{z = x^2 - 2y^2, x = \cos{t}, y = \sin{t}}$
2.
次の関数について, $ \displaystyle{\frac{\partial z}{\partial r},  \frac{\partial z}{\partial s}}$を求めよう.
(a)
$ \displaystyle{z = \tan^{-1}{\frac{y}{x}}, x = r^3 - 3rs^2,  y = 3r^2 s - s^3}$
(b)
$ \displaystyle{z = \log{\frac{y}{x}}, x = (r-1)^2 + s^2, y = (r+1)^2 + s^2}$
3.
$ \displaystyle{z = f(x,y), x = r\cos{\theta}, y = r\sin{\theta}}$ のとき,次の式が成り立つことを示そう.

$\displaystyle z_{r} = z_{x}\cos{\theta} + z_{y}\sin{\theta},  z_{\theta} = r(-z_{x}\sin{\theta} + z_{y}\cos{\theta}). $