偏微分(partial derivatives)

演習問題

1.
次の関数を偏微分しよう.
(a)
$ \displaystyle{z = x^3 + xy^2 + y^3} $
(b)
$ \displaystyle{z = e^{x} \sin{y}}$
(c)
$ \displaystyle{z = \log{(x^2 + y^2)}}$
2.
次の関数の第2次までの偏導関数をすべて求めよう.
(a)
$ \displaystyle{z = x^3 y + x y^2}$
(b)
$ \displaystyle{z = x y^2 e^{\frac{x}{y}}}$
(c)
$ \displaystyle{z = \tan^{-1}{(x^2 + y^2)}}$
3.
次の関数は原点で偏微分可能か調べよう.
(a)
$ \displaystyle{f(x,y) = \left\{\begin{array}{cl}
\frac{y^3 - x^2 y}{x^2 + y^2}, & (x,y) \neq (0,0)\\
0, & (x,y) = (0,0)
\end{array}\right.}$
(b)
$ f(x,y) = \log{(1 + xy + y^2)}$